
WLAN System Toolbox™

Reference

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

WLAN System Toolbox™ Reference
© COPYRIGHT 2015–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

October 2015 Online only New for Version 1.0 (R2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

functions — Alphabetical List
1

Classes — Alphabetical List
2

Classes — Alphabetical List
3

iii

1

functions — Alphabetical List

1 functions — Alphabetical List

wlanCoarseCFOEstimate

Coarse estimate of carrier frequency offset

Syntax

fOffset = wlanCoarseCFOEstimate(rxSig,cbw)

fOffset = wlanCoarseCFOEstimate(rxSig,cbw,corrOffset)

Description

fOffset = wlanCoarseCFOEstimate(rxSig,cbw) returns a coarse estimate of the
carrier frequency offset (CFO) given received time-domain “L-STF” on page 1-81

samples and channel bandwidth.

fOffset = wlanCoarseCFOEstimate(rxSig,cbw,corrOffset) returns a coarse
estimate given correlation offset, corrOffset.

Examples

Coarse Estimate of CFO for Non-HT Waveform

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6,'FrequencyOffset',2000);

1. IEEE® Std 802.11™-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-2

 wlanCoarseCFOEstimate

rxSig = pfOffset(txSig);

Extract the L-STF.

ind = wlanFieldIndices(nht,'L-STF');

rxLSTF = rxSig(ind(1):ind(2),:);

Estimate the frequency offset from the L-STF.

freqOffsetEst = wlanCoarseCFOEstimate(rxLSTF,'CBW20')

freqOffsetEst =

 2.0000e+03

Estimate and Correct CFO for VHT Waveform with Correlation Offset

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-STF.

vht = wlanVHTConfig;

txstf = wlanLSTF(vht);

Set the channel bandwidth and sample rate.

cbw = 'CBW80';

fs = 80e6;

Create TGac and thermal noise channel objects. Set the delay profile of the TGac channel
to 'Model-C'. Set the noise figure of the thermal noise channel to 9 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...

 'DelayProfile','Model-C','LargeScaleFadingEffect','Pathloss');

noise = comm.ThermalNoise('SampleRate',fs,'NoiseMethod','Noise figure', ...

 'NoiseFigure',9);

Pass the L-STF through the noisy TGac channel.

rxstfNoNoise = tgacChan(txstf);

1-3

1 functions — Alphabetical List

rxstf = noise(rxstfNoNoise);

Create a phase and frequency offset object and introduce a 750 Hz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs, ...

 'FrequencyOffsetSource','Input port');

rxstf = pfOffset(rxstf,750);

For the model-C delay profile, the RMS delay spread is 30 ns, which is 3/8 of the 80 ns
short training symbol duration. As such, set the correlation offset to 0.375.

corrOffset = 0.375;

Estimate the frequency offset. Your results may differ slightly.

fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst =

 749.8770

The estimate is very close to the introduced CFO of 750 Hz.

Change the delay profile to 'Model-E', which has an RMS delay spread of 100 ns.

release(tgacChan)

tgacChan.DelayProfile = 'Model-E';

Pass the transmitted signal through the modified channel and apply the 750 Hz CFO.

rxstfNoNoise = tgacChan(txstf);

rxstf = noise(rxstfNoNoise);

rxstf = pfOffset(rxstf,750);

Estimate the frequency offset.

fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst =

 682.9147

1-4

 wlanCoarseCFOEstimate

The estimate is inaccurate because the RMS delay spread is greater than the duration of
the training symbol.

Set the correlation offset to the maximum value of 1 and estimate the CFO.

corrOffset = 1;

fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst =

 747.8501

The estimate is accurate because the autocorrelation does not use the first training
symbol. The channel delay renders this symbol useless.

Correct for the estimated frequency offset.

rxstfCorrected = pfOffset(rxstf,-fOffsetEst);

Estimate the frequency offset of the corrected signal.

fOffsetEstCorr = wlanCoarseCFOEstimate(rxstfCorrected,cbw,corrOffset)

fOffsetEstCorr =

 -3.5283e-11

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';

fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

1-5

1 functions — Alphabetical List

cfg = wlanHTConfig('ChannelBandwidth',cbw);

Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs,'DelayProfile','Model-D', ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

noise = comm.ThermalNoise('SampleRate',fs, ...

 'NoiseMethod','Noise figure', ...

 'NoiseFigure',9);

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);

rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg,'L-STF');

rxstf = rxSig(istf(1):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffset1 = wlanCoarseCFOEstimate(rxstf,cbw)

foffset1 =

 2.0003e+03

Correct for the estimated offset.

rxSigCorr1 = pfOffset(rxSig,-foffset1);

1-6

 wlanCoarseCFOEstimate

Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg,'L-LTF');

rxltf1 = rxSigCorr1(iltf(1):iltf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 = wlanFineCFOEstimate(rxltf1,cbw)

foffset2 =

 6.5375

The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.

rxSigCorr2 = pfOffset(rxSigCorr1,-foffset2);

Determine the frequency offset of the twice corrected signal.

rxltf2 = rxSigCorr2(iltf(1):iltf(2),:);

deltaFreq = wlanFineCFOEstimate(rxltf2,cbw)

deltaFreq =

 -1.6112e-13

The CFO is zero.

Input Arguments

rxSig — Received signal
matrix

Received signal containing an L-STF, specified as an NS-by-NR matrix. NS is the number
of samples in the L-STF and NR is the number of receive antennas.

1-7

1 functions — Alphabetical List

Note: If the number of samples in rxSig is greater than the number of samples in the L-
STF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as: 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

Data Types: char

corrOffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

Correlation offset as a fraction of a short training symbol, specified as a real scalar
from 0 to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-STF” on page 1-8.
Data Types: double

Output Arguments

fOffset — Frequency offset
real scalar

Frequency offset in Hz, returned as a real scalar.
Data Types: double

More About

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

1-8

 wlanCoarseCFOEstimate

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT) period
(TFFT = 1 / ΔF)

L-STF duration
(TSHORT = 10 × TFFT / 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses
12 of the 52 subcarriers that are available per 20 MHz channel bandwidth segment.
The number of channel bandwidths segments is one for 5 MHz, 10 MHz, and 20 MHz
bandwidths.

References

[1] Perahia, E. and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd
Edition. United Kingdom: Cambridge University Press, 2013.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANs.” IEEE
Signal Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80–82.

[3] Terry, J. and J. Heiskala. OFDM Wireless LANs: A Theoretical and Practical Guide.
Indianapolis, IN: Sams Publishing, 2001.

1-9

1 functions — Alphabetical List

[4] Moose, P. H. A technique for orthogonal frequency division multiplexing frequency
offset correction. IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908–2914.

[5] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
comm.PhaseFrequencyOffset | wlanFineCFOEstimate | wlanLSTF

Introduced in R2015b

1-10

 wlanFineCFOEstimate

wlanFineCFOEstimate
Fine estimate of carrier frequency offset

Syntax
fOffset = wlanFineCFOEstimate(rxSig,cbw)

fOffset = wlanFineCFOEstimate(rxSig,cbw,corrOffset)

Description
fOffset = wlanFineCFOEstimate(rxSig,cbw) returns a fine estimate of the carrier
frequency offset (CFO) given received time-domain “L-LTF” on page 1-162 samples
rxSig and channel bandwidth cbw.

fOffset = wlanFineCFOEstimate(rxSig,cbw,corrOffset) returns the estimated
frequency offset given correlation offset corrOffset.

Examples
Fine Estimate of Carrier Frequency Offset

Create non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 Hz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6,'FrequencyOffset',2);

rxSig = pfOffset(txSig);

Extract the L-LTF and estimate the frequency offset.

ind = wlanFieldIndices(nht,'L-LTF');

2. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-11

1 functions — Alphabetical List

rxlltf = rxSig(ind(1):ind(2),:);

freqOffsetEst = wlanFineCFOEstimate(rxlltf,'CBW20')

freqOffsetEst =

 2.0000

Estimate and Correct CFO for VHT Waveform

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-LTF.

vht = wlanVHTConfig;

txltf = wlanLLTF(vht);

Set the sample rate to correspond to the default bandwidth of the VHT configuration
object.

fs = 80e6;

Create TGac and thermal noise channel objects. Set the noise figure of the AWGN
channel to 10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs, ...

 'ChannelBandwidth',vht.ChannelBandwidth, ...

 'DelayProfile','Model-C','LargeScaleFadingEffect','Pathloss');

noise = comm.ThermalNoise('SampleRate',fs, ...

 'NoiseMethod','Noise figure', ...

 'NoiseFigure',10);

Pass the L-LTF through the noisy TGac channel.

rxltfNoNoise = tgacChan(txltf);

rxltf = noise(rxltfNoNoise);

Create a phase and frequency offset object and introduce a 25 Hz frequency offset.

pfoffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

rxltf = pfoffset(rxltf,25);

Perform a fine estimate the frequency offset using a correlation offset of 0.6. Your results
may differ slightly.

1-12

 wlanFineCFOEstimate

fOffsetEst = wlanFineCFOEstimate(rxltf,vht.ChannelBandwidth,0.6)

fOffsetEst =

 24.1252

Correct for the estimated frequency offset.

rxltfCorr = pfoffset(rxltf,-fOffsetEst);

Estimate the frequency offset of the corrected signal.

fOffsetEstCorr = wlanFineCFOEstimate(rxltfCorr,vht.ChannelBandwidth,0.6)

fOffsetEstCorr =

 6.8187e-13

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';

fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

cfg = wlanHTConfig('ChannelBandwidth',cbw);

Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs,'DelayProfile','Model-D', ...

1-13

1 functions — Alphabetical List

 'LargeScaleFadingEffect','Pathloss and shadowing');

noise = comm.ThermalNoise('SampleRate',fs, ...

 'NoiseMethod','Noise figure', ...

 'NoiseFigure',9);

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);

rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg,'L-STF');

rxstf = rxSig(istf(1):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffset1 = wlanCoarseCFOEstimate(rxstf,cbw)

foffset1 =

 2.0003e+03

Correct for the estimated offset.

rxSigCorr1 = pfOffset(rxSig,-foffset1);

Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg,'L-LTF');

rxltf1 = rxSigCorr1(iltf(1):iltf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 = wlanFineCFOEstimate(rxltf1,cbw)

foffset2 =

1-14

 wlanFineCFOEstimate

 6.5375

The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.

rxSigCorr2 = pfOffset(rxSigCorr1,-foffset2);

Determine the frequency offset of the twice corrected signal.

rxltf2 = rxSigCorr2(iltf(1):iltf(2),:);

deltaFreq = wlanFineCFOEstimate(rxltf2,cbw)

deltaFreq =

 -1.6112e-13

The CFO is zero.

Input Arguments
rxSig — Received signal
matrix

Received signal containing an L-LTF, specified as an NS-by-NR matrix. NS is the number
of samples in the L-LTF and NR is the number of receive antennas.

Note: If the number of samples in rxSig is greater than the number of samples in the L-
LTF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as: 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

1-15

1 functions — Alphabetical List

Data Types: char

corrOffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

Correlation offset as a fraction of the L-LTF cyclic prefix, specified as a real scalar
from 0 to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-LTF” on page 1-16.
Data Types: double

Output Arguments

fOffset — Frequency offset
real scalar

Frequency offset in Hz, returned as a real scalar.
Data Types: double

More About

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

1-16

 wlanFineCFOEstimate

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

References

[1] Perahia, E. and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd
Edition. United Kingdom: Cambridge University Press, 2013.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANs.” IEEE
Signal Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80–82.

1-17

1 functions — Alphabetical List

[3] Terry, J. and J. Heiskala. OFDM Wireless LANs: A Theoretical and Practical Guide.
Indianapolis, IN: Sams Publishing, 2001.

[4] Moose, P. H. A technique for orthogonal frequency division multiplexing frequency
offset correction. IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908–2914.

See Also
comm.PhaseFrequencyOffset | wlanCoarseCFOEstimate | wlanLLTF

Introduced in R2015b

1-18

 wlanLLTFChannelEstimate

wlanLLTFChannelEstimate

Channel estimation using L-LTF

Syntax

chEst = wlanLLTFChannelEstimate(demodSig,cfg)

chEst = wlanLLTFChannelEstimate(demodSig,cbw)

chEst = wlanLLTFChannelEstimate(___ ,span)

Description

chEst = wlanLLTFChannelEstimate(demodSig,cfg) returns the channel estimate
between the transmitter and all receive antennas using the demodulated “L-LTF” on
page 1-283, demodSig, given the parameters specified in configuration object cfg.

chEst = wlanLLTFChannelEstimate(demodSig,cbw) returns the channel estimate
given channel bandwidth cbw. The channel bandwidth can be used instead of the
configuration object.

chEst = wlanLLTFChannelEstimate(___ ,span) returns the channel estimate and
performs frequency smoothing over the specified filter span. For more information, see
“Frequency Smoothing” on page 1-30.

This syntax supports input options from prior syntaxes.

Examples

Estimate SISO Channel Using L-LTF

Create VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

3. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-19

1 functions — Alphabetical List

vht = wlanVHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.1 + 0.5i and pass it through an AWGN
channel with a 30 dB signal-to-noise ratio.

rxWaveform = awgn(txWaveform*(-0.1+0.5i),30);

Extract the L-LTF field indices and demodulate the L-LTF. Perform channel estimation
without frequency smoothing.

idxLLTF = wlanFieldIndices(vht,'L-LTF');

demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),vht);

est = wlanLLTFChannelEstimate(demodSig,vht);

Plot the channel estimate.

scatterplot(est)

grid

1-20

 wlanLLTFChannelEstimate

The channel estimate matches the complex channel multiplier.

Estimate 80 MHz SISO Channel Using L-LTF

Create a VHT format configuration object. Using these objects, generate a time-domain
waveform for an 802.11ac VHT packet.

vht = wlanVHTConfig('ChannelBandwidth','CBW80');

txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.4 + 0.3i and pass it through an AWGN
channel.

rxWaveform = awgn(txWaveform*(-0.4+0.3i),30);

1-21

1 functions — Alphabetical List

Specify the channel bandwidth for demodulation and channel estimation. Extract the
L-LTF field indices, demodulate the L-LTF, and perform channel estimation without
frequency smoothing.

chanBW = 'CBW80';

idxLLTF = wlanFieldIndices(vht,'L-LTF');

demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),chanBW);

est = wlanLLTFChannelEstimate(demodSig,chanBW);

Plot the channel estimate.

scatterplot(est)

grid

1-22

 wlanLLTFChannelEstimate

The channel estimate matches the complex channel multiplier.

Estimate SISO Channel Using L-LTF and Smoothing Filter

Create a VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

vht = wlanVHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by 0.2 - 0.6i and pass it through an AWGN channel
having a 10 dB SNR.

rxWaveform = awgn(txWaveform*complex(0.2,-0.6),10);

Extract the L-LTF from the received waveform. Demodulate the L-LTF.

idxLLTF = wlanFieldIndices(vht, 'L-LTF');

lltfDemodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),vht);

Use the demodulated L-LTF signal to generate the channel estimate.

est = wlanLLTFChannelEstimate(lltfDemodSig,vht);

Plot the channel estimate.

scatterplot(est)

grid

1-23

1 functions — Alphabetical List

The channel estimate is noisy, which may lead to inaccurate data recovery.

Estimate the channel again with the filter span set to 11.

est = wlanLLTFChannelEstimate(lltfDemodSig,vht,11);

scatterplot(est)

grid

1-24

 wlanLLTFChannelEstimate

The filtering provides a better channel estimate.

Estimate Channel with L-LTF and Recover VHT-SIG-A

Create a VHT format configuration object. Generate L-LTF and VHT-SIG-A fields.

vht = wlanVHTConfig;

txLLTF = wlanLLTF(vht);

txSig = wlanVHTSIGA(vht);

Create a TGac channel for an 80 MHz bandwidth and a Model-A delay profile. Pass the
transmitted L-LTF and VHT-SIG-A signals through the channel.

tgacChan = wlanTGacChannel('SampleRate',80e6,'ChannelBandwidth','CBW80', ...

1-25

1 functions — Alphabetical List

 'DelayProfile','Model-A');

rxLLTFNoNoise = tgacChan(txLLTF);

rxSigNoNoise = tgacChan(txSig);

Create an AWGN noise channel with an SNR = 15 dB. Add the AWGN noise to L-LTF
and VHT-SIG-A signals.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',15);

rxLLTF = chNoise(rxLLTFNoNoise);

rxSig = chNoise(rxSigNoNoise);

Create an AWGN channel having a noise variance corresponding to a 9 dB noise figure
receiver. Pass the faded signals through the AWGN channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(80e6) + 9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxLLTF = awgnChan(rxLLTF);

rxSig = awgnChan(rxSig);

Demodulate the received L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);

Estimate the channel using the demodulated L-LTF.

chEst = wlanLLTFChannelEstimate(demodLLTF,vht);

Recover the VHT-SIG-A signal and verify that there was no CRC failure.

[recBits,crcFail] = wlanVHTSIGARecover(rxSig,chEst,nVar,'CBW80');

crcFail

crcFail =

 logical

 0

1-26

 wlanLLTFChannelEstimate

Input Arguments

demodSig — Demodulated L-LTF OFDM symbols
3-D array

Demodulated L-LTF OFDM symbols, specified as an NST-by-NSYM-by-NR array. NST
is the number of occupied subcarriers. NSYM is the number of demodulated L-LTF
symbols (one or two). NR is the number of receive antennas. Each column of the 3-
D array is a demodulated L-LTF OFDM symbol. If you specify two L-LTF symbols,
wlanLLTFChannelEstimate averages the channel estimate over both symbols.

Data Types: double
Complex Number Support: Yes

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as one of these objects:

• wlanVHTConfig for VHT format
• wlanHTConfig for HT format
• wlanNonHTConfig for non-HT format

The wlanLLTFChannelEstimate function uses the ChannelBandwidth property of
cfg.

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth of the packet transmission waveform, specified as:

PPDU Transmission Format Valid Channel Bandwidth

VHT 'CBW20', 'CBW40', 'CBW80' (default), or
'CBW160'

HT 'CBW20' (default) or 'CBW40'

1-27

1 functions — Alphabetical List

PPDU Transmission Format Valid Channel Bandwidth

non-HT 'CBW5', 'CBW10', or 'CBW20' (default)

Data Types: char

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as a positive odd integer and
expressed as a number of subcarriers. Frequency smoothing is applied only when span is
specified and is greater than one. See “Frequency Smoothing” on page 1-30.

Note: Frequency smoothing is recommended only when a single transmit antenna is
used.

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate containing data and pilot subcarriers, returned as an NST-by-1-by-NR
array. NST is the number of occupied subcarriers. The value of 1 corresponds to the single
transmitted stream in the L-LTF. NR is the number of receive antennas.

More About

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

1-28

 wlanLLTFChannelEstimate

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

The L-LTF duration varies with channel bandwidth.

1-29

1 functions — Alphabetical List

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Frequency Smoothing

Frequency smoothing can improve channel estimation for highly correlated channels by
averaging out white noise.

Frequency smoothing is recommended only for cases in which a single transmit antenna
is used. Frequency smoothing consists of applying a moving-average filter that spans
multiple adjacent subcarriers. Channel conditions dictate whether frequency smoothing
is beneficial.

• If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction.

• In a highly frequency-selective channel, smoothing can degrade the quality of the
channel estimate.

References

[1] Van de Beek, J.-J., O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson. “On
Channel Estimation in OFDM Systems." Vehicular Technology Conference, IEEE
45th, Volume 2, IEEE, 1995.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTLTFChannelEstimate | wlanLLTFDemodulate |
wlanNonHTConfig | wlanVHTConfig | wlanVHTLTFChannelEstimate

1-30

 wlanLLTFChannelEstimate

Introduced in R2015b

1-31

1 functions — Alphabetical List

wlanHTLTFChannelEstimate
Channel estimation using HT-LTF

Syntax

chEst = wlanHTLTFChannelEstimate(demodSig,cfg)

chEst = wlanHTLTFChannelEstimate(demodSig,cfg,span)

Description

chEst = wlanHTLTFChannelEstimate(demodSig,cfg) returns the channel
estimate using the demodulated “HT-LTF” on page 1-384 signal, demodSig, given the
parameters specified in configuration object cfg.

chEst = wlanHTLTFChannelEstimate(demodSig,cfg,span) returns the channel
estimate and specifies the span of a moving-average filter used to perform frequency
smoothing.

Examples

Estimate SISO Channel Using HT-LTF

Estimate and plot the channel coefficients of an HT-mixed format channel by using the
high throughput long training field.

Create an HT format configuration object. Generate the corresponding HT-LTF based on
the object.

cfg = wlanHTConfig;

txSig = wlanHTLTF(cfg);

Multiply the transmitted HT-LTF signal by 0.2 + 0.1i and pass it through an AWGN
channel. Demodulate the received signal.

4. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-32

 wlanHTLTFChannelEstimate

rxSig = awgn(txSig*(0.2+0.1i),30);

demodSig = wlanHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated HT-LTF.

est = wlanHTLTFChannelEstimate(demodSig,cfg);

Plot the channel estimate.

scatterplot(est)

grid

1-33

1 functions — Alphabetical List

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using HT-LTF

Estimate the channel coefficients of a 2x2 MIMO channel by using the high throughput
long training field. Recover the HT-data field and determine the number of bit errors.

Create an HT-mixed format configuration object for a channel having two spatial streams
and four transmit antennas. Transmit a complete HT waveform.

cfg = wlanHTConfig('NumTransmitAntennas',2, ...

 'NumSpaceTimeStreams',2,'MCS',11);

txPSDU = randi([0 1],8*cfg.PSDULength,1);

txWaveform = wlanWaveformGenerator(txPSDU,cfg);

Pass the transmitted waveform through a 2x2 TGn channel.

tgnChan = wlanTGnChannel('SampleRate',20e6, ...

 'NumTransmitAntennas',2, ...

 'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

rxWaveformNoNoise = tgnChan(txWaveform);

Create an AWGN channel with noise power, nVar, corresponding to a receiver having a 9
dB noise figure. The noise power is equal to kTBF, where k is Boltzmann's constant, T is
the ambient noise temperature (290K), B is the bandwidth (20 MHz), and F is the noise
figure (9 dB).

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(20e6) + 9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...

 'Variance',nVar);

Pass the signal through the AWGN channel.

rxWaveform = awgnChan(rxWaveformNoNoise);

Determine the indices for the HT-LTF. Extract the HT-LTF from the received waveform.
Demodulate the HT-LTF.

indLTF = wlanFieldIndices(cfg,'HT-LTF');

rxLTF = rxWaveform(indLTF(1):indLTF(2),:);

ltfDemodSig = wlanHTLTFDemodulate(rxLTF,cfg);

Generate the channel estimate by using the demodulated HT-LTF signal. Specify a
smoothing filter span of three subcarriers.

1-34

 wlanHTLTFChannelEstimate

chEst = wlanHTLTFChannelEstimate(ltfDemodSig,cfg,3);

Extract the HT-data field from the received waveform.

indData = wlanFieldIndices(cfg,'HT-Data');

rxDataField = rxWaveform(indData(1):indData(2),:);

Recover the data and verify that there no bit errors occurred.

rxPSDU = wlanHTDataRecover(rxDataField,chEst,nVar,cfg);

numErrs = biterr(txPSDU,rxPSDU)

numErrs =

 0

Input Arguments

demodSig — Demodulated HT-LTF signal
3-D array

Demodulated HT-LTF signal, specified as an NST-by-NSYM-by-NR array. NST is the
number of occupied subcarriers, NSYM is the number of HT-LTF OFDM symbols, and NR
is the number of receive antennas.
Data Types: double
Complex Number Support: Yes

cfg — Configuration information
wlanHTConfig

Configuration information, specified as a wlanHTConfig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

1-35

1 functions — Alphabetical List

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

1-36

 wlanHTLTFChannelEstimate

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.
Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

Note: If adjacent subcarriers are highly correlated, frequency smoothing will result in
significant noise reduction. However, in a highly frequency selective channel, smoothing
may degrade the quality of the channel estimate.

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an NST-by-(NSTS+NESS)-by-NR array. NST is the number of occupied
subcarriers, NSTS is the number of space-time streams. NESS is the number of extension
spatial streams. NR is the number of receive antennas. Data and pilot subcarriers are
included in the channel estimate.
Data Types: double
Complex Number Support: Yes

1-37

1 functions — Alphabetical List

More About

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and
data field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has
one or two parts. The first part consists of one, two, or four HT-LTFs that are necessary
for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as
HT-DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can
be used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-
Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long
training symbol is 4 μs. The number of space-time streams and the number of extension
streams determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination

Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

NSS from
MCS

STBC
field

NSTS

1 0 1

NSTS NHTDLTF

1 1

NESS NHTELTF

0 0

1-38

 wlanHTLTFChannelEstimate

NSTS Determination NHTDLTF Determination NHTELTF Determination

NSS from
MCS

STBC
field

NSTS

1 1 2

2 0 2

2 1 3

2 2 4

3 0 3

3 1 4

4 0 4

NSTS NHTDLTF

2 2

3 4

4 4

NESS NHTELTF

1 1

2 2

3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems, Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFDemodulate

Introduced in R2015b

1-39

1 functions — Alphabetical List

wlanVHTLTFChannelEstimate
Channel estimation using VHT-LTF

Syntax

chEst = wlanVHTLTFChannelEstimate(demodSig,cfg)

chEst = wlanVHTLTFChannelEstimate(demodSig,cbw,numSTS)

chEst = wlanVHTLTFChannelEstimate(___ ,span)

Description

chEst = wlanVHTLTFChannelEstimate(demodSig,cfg) returns the channel
estimate, using the demodulated “VHT-LTF” on page 1-475 signal, demodSig, given
the parameters specified in wlanVHTConfig object cfg.

chEst = wlanVHTLTFChannelEstimate(demodSig,cbw,numSTS) returns the
channel estimate for the specified channel bandwidth, cbw, and the number of space-time
streams, numSTS.

chEst = wlanVHTLTFChannelEstimate(___ ,span) specifies the span of a moving-
average filter used to perform frequency smoothing.

Examples

Estimate SISO Channel Using VHT-LTF

Display the channel estimate of the data and pilot subcarriers for a VHT format channel
using its long training field.

Create a VHT format configuration object. Generate a VHT-LTF based on cfg.

cfg = wlanVHTConfig;

txSig = wlanVHTLTF(cfg);

5. IEEE Std 802.11ac™-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-40

 wlanVHTLTFChannelEstimate

Multiply the transmitted VHT-LTF signal by 0.3 - 0.15i and pass it through an AWGN
channel having a 30 dB signal-to-noise ratio. Demodulate the received signal.

rxSig = awgn(txSig*(0.3-0.15i),30);

demodSig = wlanVHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated VHT-LTF signal.

est = wlanVHTLTFChannelEstimate(demodSig,cfg);

Plot the channel estimate.

scatterplot(est)

grid

1-41

1 functions — Alphabetical List

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using VHT-LTF

Estimate and display the channel coefficients of a 4x2 MIMO channel using the VHT-
LTF.

Create a VHT format configuration object for a channel having four spatial streams and
four transmit antennas. Transmit a complete VHT waveform.

cfg = wlanVHTConfig('NumTransmitAntennas',4, ...

 'NumSpaceTimeStreams',4,'MCS',5);

txWaveform = wlanWaveformGenerator([1;0;0;1;1;0],cfg);

Set the sampling rate, and then pass the transmitted waveform through a 4x2 TGac
channel.

fs = 80e6;

tgacChan = wlanTGacChannel('SampleRate',fs, ...

 'NumTransmitAntennas',4,'NumReceiveAntennas',2);

rxWaveform = tgacChan(txWaveform);

Determine the VHT-LTF field indices and demodulate the VHT-LTF from the received
waveform.

indVHTLTF = wlanFieldIndices(cfg,'VHT-LTF');

ltfDemodSig = wlanVHTLTFDemodulate(rxWaveform(indVHTLTF(1):indVHTLTF(2),:), cfg);

Generate the channel estimate by using the demodulated VHT-LTF signal. Specify a
smoothing filter span of five subcarriers.

est = wlanVHTLTFChannelEstimate(ltfDemodSig,cfg,5);

Plot the magnitude response of the first space-time stream for both receive antennas.
Due to the random nature of the fading channel, your results may vary.

plot(abs(est(:,1,1)))

hold on

plot(abs(est(:,1,2)))

xlabel('Subcarrier')

ylabel('Magnitude')

legend('Rx Antenna 1','Rx Antenna 2')

1-42

 wlanVHTLTFChannelEstimate

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';

numSTS = [1 3];

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...

 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

1-43

1 functions — Alphabetical List

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen =

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);

txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);

txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;

H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));

H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');

rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');

rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));

noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

powerDB2 = 10*log10(var(rxVHTData2));

1-44

 wlanVHTLTFChannelEstimate

noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);

chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);

chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);

[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 =

 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);

[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 =

 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because
it receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments

demodSig — Demodulated VHT-LTF signal
3-D array

1-45

1 functions — Alphabetical List

Demodulated VHT-LTF signal, specified as an NST-by-NSYM-by-NR array. NST is the
number of occupied subcarriers, NSYM is the number of VHT-LTF OFDM symbols, and NR
is the number of receive antennas.
Data Types: double
Complex Number Support: Yes

cfg — Format configuration
wlanVHTConfig

Format configuration, specified as a wlanVHTConfig object.

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Data Types: char

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] indicates that one space-time stream is assigned to user 1, three
space-time streams are assigned to user 2, and two space-time streams are assigned to
user 3.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

1-46

 wlanVHTLTFChannelEstimate

Note: If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction. However, in a highly frequency-selective channel, smoothing
can degrade the quality of the channel estimate.

Data Types: double

Output Arguments

chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an NST-by-NSTS,total-by-NR array. NST is the number of occupied subcarriers.
NSTS,total is the total number of space-time streams for all users. For the single-user case,
NSTS,total = NSTS. NR is the number of receive antennas. The channel estimate includes
coefficients for both the data and pilot subcarriers.
Data Types: double
Complex Number Support: Yes

More About

VHT-LTF

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected

1-47

1 functions — Alphabetical List

MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition, United Kingdom: Cambridge University Press, 2013.

See Also
wlanVHTConfig | wlanVHTDataRecover | wlanVHTLTFDemodulate

Introduced in R2015b

1-48

 wlanFieldIndices

wlanFieldIndices
Generate PPDU field indices

Syntax

ind = wlanFieldIndices(cfg)

ind = wlanFieldIndices(cfg,field)

Description

ind = wlanFieldIndices(cfg) returns a structure, ind, containing the start and
stop indices of the individual component fields that comprise the PPDU, given a format
configuration object.

Note: This function only supports generation of field indices for OFDM modulation.

ind = wlanFieldIndices(cfg,field) returns a row vector containing the start and
stop indices for the specified field type.

Examples

Extract PPDU Fields From VHT Waveform

Extract the VHT-STF from a VHT waveform.

Create VHT configuration object for a MIMO transmission using a 160 MHz channel
bandwidth. Generate the corresponding VHT waveform.

cfg = wlanVHTConfig('MCS',8,'ChannelBandwidth','CBW160','NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Determine the component PPDU field indices for the VHT format.

ind = wlanFieldIndices(cfg)

1-49

1 functions — Alphabetical List

ind =

 struct with fields:

 LSTF: [1 1280]

 LLTF: [1281 2560]

 LSIG: [2561 3200]

 VHTSIGA: [3201 4480]

 VHTSTF: [4481 5120]

 VHTLTF: [5121 6400]

 VHTSIGB: [6401 7040]

 VHTData: [7041 8320]

The VHT PPDU waveform is comprised of eight fields, including seven preamble fields
and one data field.

Extract the VHT-STF from the transmitted waveform.

stf = txSig(ind.VHTSTF(1):ind.VHTSTF(2),:);

Verify that the VHT-STF has dimensions of 640-by-2 corresponding to the number of
samples (80 for each 20 MHz bandwidth segment) and the number of transmit antennas.

size(stf)

ans =

 640 2

Extract VHT-LTF and Recover VHT Data

Generate a VHT waveform. Extract and demodulate the VHT-LTF to estimate the
channel coefficients. Recover the data field using the channel estimate and use this to
determine the number of bit errors.

Configure a VHT format object with two paths.

vht = wlanVHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a random PSDU and create the corresponding VHT waveform.

txPSDU = randi([0 1],8*vht.PSDULength,1);

1-50

 wlanFieldIndices

txSig = wlanWaveformGenerator(txPSDU,vht);

Pass the signal through a TGac 2x2 MIMO channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2,'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

rxSigNoNoise = tgacChan(txSig);

Add AWGN to the received signal. Set the noise variance for the case in which the
receiver has a 9 dB noise figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(80e6)+9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxSig = awgnChan(rxSigNoNoise);

Determine the indices for the VHT-LTF and extract the field from the received signal.

indVHT = wlanFieldIndices(vht,'VHT-LTF');

rxLTF = rxSig(indVHT(1):indVHT(2),:);

Demodulate the VHT-LTF and estimate the channel coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,vht);

chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the data field and recover the information bits.

indData = wlanFieldIndices(vht,'VHT-Data');

rxData = rxSig(indData(1):indData(2),:);

rxPSDU = wlanVHTDataRecover(rxData,chEst,nVar,vht);

Determine the number of bit errors.

numErrs = biterr(txPSDU,rxPSDU)

numErrs =

 0

Input Arguments

cfg — Transmission format
wlanVHTConfig | wlanHTConfig | wlanNonHTConfig

1-51

1 functions — Alphabetical List

Transmission format, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig configuration object.

Example: txformat = wlanVHTConfig

field — PPDU field
character vector

PPDU field, specified as 'L-STF', 'L-LTF', 'L-SIG', 'HT-SIG', 'VHT-SIG-A', 'HT-
STF', 'VHT-STF', 'HT-LTF', 'VHT-LTF', 'VHT-SIG-B', 'NonHT-Data', 'HT-Data',
or 'VHT-Data'.

• 'VHT-SIG-A', 'VHT-STF', 'VHT-LTF', 'VHT-SIG-B', and 'VHT-Data' are valid
for the VHT format only.

• 'HT-SIG', 'HT-STF', 'HT-LTF', and 'HT-Data' are valid for the HT format only.
• 'NonHT-Data' is valid for the non-HT format only.
• 'L-STF', 'L-LTF', and 'L-SIG' are common to all formats.

Data Types: char

Output Arguments

ind — Start and stop indices
structure | vector

Start and stop indices of all PPDU fields, returned as a structure. If you specify field,
the function returns ind as a 1-by-2 vector consisting of the start and stop indices of the
PPDU field.

Note: In null data packet (NDP) mode, ind is returned as an empty matrix. NDP mode
occurs when either of these conditions are met:

• For VHT, APEPLength = 0.
• For HT, PSDULength = 0.

Data Types: struct | double

1-52

 wlanFieldIndices

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanGeneratorConfig | wlanHTConfig | wlanNonHTConfig | wlanVHTConfig |
wlanWaveformGenerator

Introduced in R2015b

1-53

1 functions — Alphabetical List

wlanFormatDetect
Packet format detection

Syntax

format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw)

format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw,cfgRec)

Description

format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw) detects and
returns the packet format for the specified received signal. Inputs include the received
signal, the channel estimate, the noise variance estimate, and the channel bandwidth.
For more information, see “Format Detection Processing” on page 1-59.

format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw,cfgRec) uses
cfgRec to specify algorithm options for information bit recovery.

Examples

Detect HT-MF Format Waveform

Perform format detection on a WLAN high throughput mixed format (HT-MF) waveform.

Generate an HT-MF waveform and add noise to the transmitted waveform.

cbw = 'CBW20';

cfgTx = wlanHTConfig('ChannelBandwidth',cbw);

tx = wlanWaveformGenerator([1;0;0;1],cfgTx);

snr = 10;

rxSig = awgn(tx,snr);

Demodulate Received Signal and Perform Channel Estimation

• Determine indices for the L-LTF for the 20 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and
L-LTF fields in seconds.

1-54

 wlanFormatDetect

• Demodulate the L-LTF.
• Perform channel estimation using the L-LTF.
• Estimate the noise variance.

sr = 20e6;

Tlstf = 8e-6;

Tlltf = 8e-6;

idxlltf = Tlstf*sr+(1:Tlltf*sr);

lltfDemod = wlanLLTFDemodulate(rxSig(idxlltf,:),cbw);

chEst = wlanLLTFChannelEstimate(lltfDemod,cbw);

noiseVarEst = 10^(-snr/20);

Detect Signal Format

• Determine indices for the three symbols following the L-LTF. For a 20 MHz
bandwidth waveform, the duration for three symbols is 12 .

• Perform format detection.

idxDetectionSymbols = (Tlstf+Tlltf)*sr+(1:12e-6*sr);

in = rxSig(idxDetectionSymbols,:);

format = wlanFormatDetect(in,chEst,noiseVarEst,cbw)

format =

HT-MF

Detect VHT Format Waveform After Adjusting Recovery Algorithm

Perform format detection on a WLAN very high throughput (VHT) waveform. Use the
recovery configuration object to adjust the default recovery algorithm settings.

Generate an VHT waveform and add noise to the transmitted waveform.

cbw = 'CBW80';

cfgTx = wlanVHTConfig('ChannelBandwidth',cbw);

tx = wlanWaveformGenerator([1;0;0;1],cfgTx);

snr = 10;

rxSig = awgn(tx,snr);

1-55

1 functions — Alphabetical List

Received signal demodulation and channel estimation

• Determine indices for the L-LTF for the 80 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and
L-LTF fields in seconds.

• Demodulate the L-LTF.
• Perform channel estimation using the L-LTF.
• Estimate the noise variance.

sr = 80e6;

Tlstf = 8e-6;

Tlltf = 8e-6;

idxlltf = Tlstf*sr+(1:Tlltf*sr);

lltfDemod = wlanLLTFDemodulate(rxSig(idxlltf,:),cbw);

chEst = wlanLLTFChannelEstimate(lltfDemod,cbw);

noiseVarEst = 10^(-snr/20);

Format detection

• Determine indices for the three symbols following the L-LTF. For an 80 MHz
bandwidth waveform, the duration for three symbols is 12 .

• Adjust the default recovery settings.
• Perform format detection using modified recovery settings.

TdetectionSymbols = 12e-6;

idxDetectionSymbols = (Tlstf+Tlltf)*sr+(1:TdetectionSymbols*sr);

in = rxSig(idxDetectionSymbols,:);

cfgRec = wlanRecoveryConfig('OFDMSymbolOffset',0.5,...

 'PilotPhaseTracking','None')

format = wlanFormatDetect(in,chEst,noiseVarEst,cbw,cfgRec)

cfgRec =

 wlanRecoveryConfig with properties:

 OFDMSymbolOffset: 0.5000

 EqualizationMethod: 'MMSE'

 PilotPhaseTracking: 'None'

 MaximumLDPCIterationCount: 12

 EarlyTermination: 0

1-56

 wlanFormatDetect

format =

VHT

Input Arguments

rxSig — Received time-domain signal
matrix

Received time-domain signal containing the three OFDM symbols immediately following
the L-LTF, specified as an NS-by-NR matrix. NS represents the number of time-domain
samples in three OFDM symbols. NR is the number of receive antennas.

Note: If NS is greater than three OFDM symbols, additional samples after the first three
symbols are not used.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimation
matrix | 3-D array

Channel estimation for data and pilot subcarriers based on the L-LTF, specified as a
matrix or array of size NST-by-1-by-NR. NST is the number of occupied subcarriers. The
second dimension corresponds to the single transmitted stream in the L-LTF. If multiple
transmit antennas are used, the single transmitted stream includes the combined cyclic
shifts. NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

1-57

1 functions — Alphabetical List

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters containing properties used during data recovery, specified
as a wlanRecoveryConfig object. The configurable properties include the OFDM
symbol sampling offset, the equalization method, and the type of pilot phase tracking.
If you do not specify a cfgRec object, the default object property values described in
wlanRecoveryConfig Properties are used in the data recovery.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

1-58

 wlanFormatDetect

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

format — Packet format
'Non-HT' | 'HT-MF' | 'HT-GF' | 'VHT'

Packet format, returned as 'Non-HT', 'HT-MF', 'HT-GF', or 'VHT'.

More About

Algorithms

Format Detection Processing

The format detection processing algorithm determines the packet format by detecting
the modulation scheme of three symbols. Specifically, the input waveform, rxSig, should

1-59

1 functions — Alphabetical List

include three symbols, beginning with the first sample of the fifth symbol and ending
with the last sample of the seventh symbol. Additional samples after the last sample of
symbol seven are not used.

• If the packet is non-HT, HT-MF, or VHT format, these are the three symbols following
the L-LTF symbol.

• If the packet is HT-GF format, these are the three symbols following the HT-LTF1
symbol.

Prior to demodulating any packet symbols, the wlanFormatDetect function checks the
channel bandwidth input. If the channel bandwidth is 5 MHz or 10 MHz, the algorithm
processing concludes and the function returns non-HT as the detected packet format.
The channel estimate, noise variance estimate, and channel bandwidth are used in
the recovery of L-SIG field bits from the fifth symbol, and in the demodulation and
equalization of the sixth and seventh symbols.

The logic associated with format detection confirms the modulation scheme by using
three consecutive symbols, beginning with the first signaling symbol (L-SIG or HT-SIG1)
in sequence. As shown, the packet format prediction is made based on which symbols are
BPSK or QBPSK modulated. This logic flow chart identifies the fifth, sixth, and seventh
symbols of the packet as sym0, sym1, and sym2, respectively.

1-60

 wlanFormatDetect

1-61

1 functions — Alphabetical List

• If sym0 is QBPSK, the packet format is HT-GF.
• If sym0 is BPSK and the L-SIG parity check fails, a warning is issued. The format

detection processing continues because the L-SIG parity check does not conclusively
indicate an error in the MCS determination.

• If the MCS is not zero, the packet format is non-HT.
• If the MCS is zero, the modulation scheme of sym1 is detected.

• If sym1 is QBPSK, the packet format is HT-MF.
• If sym1 is BPSK, sym2 is detected.

• If sym2 is QBPSK, the packet format is VHT.
• If sym2 is BPSK, the packet format is non-HT.

See Also
wlanLLTFChannelEstimate | wlanLSIGRecover | wlanRecoveryConfig

Introduced in R2016b

1-62

 wlanGeneratorConfig

wlanGeneratorConfig
(Not recommended) Create waveform generator configuration object

Compatibility

To override default waveform generator configuration values, use the
wlanWaveformGenerator(bits,cfgFormat,Name1,Value1,...,NameN,ValueN)

syntax.

Use of wlanGeneratorConfig is not recommended. Therefore, use of the
wlanWaveformGenerator(bits,cfgFormat,cfgWaveGen) syntax is discouraged as
well.

Syntax

cfgWaveGen = wlanGeneratorConfig

cfgWaveGen = wlanGeneratorConfig(Name,Value)

Description

cfgWaveGen = wlanGeneratorConfig creates a waveform generator configuration
object. Use an instance of this object to configure the wlanWaveformGenerator
function.

cfgWaveGen = wlanGeneratorConfig(Name,Value) creates a waveform generator
configuration object that overrides default values using one or more Name,Value pair
arguments.

Examples

Waveform Generator Parameterization

Waveform generation using the waveform generator configuration object as shown
in Method 1 is not recommended. Instead, use Name,Value pairs when creating the
waveform as shown in Method 2.

1-63

1 functions — Alphabetical List

Create VHT Format Configuration Object

Create a format configuration object for an 802.11ac VHT transmission. Specify
generation of a waveform with 10 packets and a 20 microsecond idle period between
packets. Use a random scrambler initial value for each packet.

cfgVHT = wlanVHTConfig;

numPackets = 10;

idleTime = 20e-6;

scramblerInit = randi([1 127],numPackets, 1);

Method 1: (Not Recommended) Use wlanGeneratorConfig object in wlanWaveformGenerator

cfgWaveGen = wlanGeneratorConfig('NumPackets',numPackets,...

 'IdleTime',idleTime,'ScramblerInitialization', scramblerInit);

txWaveform1 = wlanWaveformGenerator([1;0;0;1],cfgVHT,cfgWaveGen);

Warning: The use of wlanGeneratorConfig object is discouraged for parameterizing

the wlanWaveformGenerator function. See the documentation of

wlanWaveformGenerator for the recommended parameter name-value pair syntax.

To supress the warning associated with use of wlanGeneratorConfig, execute
"warning('off','wlan:wlanGeneratorConfig:Deprecation');" in your
MATLAB® command window prior to the running code.

Method 2: Use Name-Value pair syntax in wlanWaveformGenerator

txWaveform2 = wlanWaveformGenerator([1;0;0;1],cfgVHT,'NumPackets',...

 numPackets,'IdleTime',idleTime,'ScramblerInitialization',scramblerInit);

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NumPackets',21,'ScramblerInitialization',[52,17]

'NumPackets' — Number of packets
1 (default) | positive integer

1-64

 wlanGeneratorConfig

Number of packets to generate in a single function call, specified as a positive integer.
Data Types: double

'IdleTime' — Idle time added after each packet
0 (default) | nonnegative scalar

Idle time added after each packet, specified as a nonnegative scalar in seconds. If
IdleTime is greater than the default value of zero, it cannot be less than 2 µs.

Example: 20e-6

Data Types: double

'ScramblerInitialization' — Initial scrambler state
93 (default) | integer from 1 to 127 | matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer from 1 to 127, or as an NP-by-NUsers matrix of integers with values from 1 to 127.
NP is the number of packets, and NUsers is the number of users. The default value of 93 is
the example state given in IEEE Std 802.11-2012, Section L.1.5.2.

• When specified as a scalar, the same scrambler initialization value is used to generate
each packet for each user of a multipacket waveform.

• When specified as a matrix, each element represents an initial state of the scrambler
for packets in the multipacket waveform generated for each user. Each column
specifies the initial states for a single user, therefore up to four columns are
supported. If a single column is provided, the same initial states are used for all users.
Each row represents the initial state of each packet to generate. Therefore, a matrix
with multiple rows enables you to use a different initial state per packet, where the
first row contains the initial state of the first packet. If the number of packets to
generate exceeds the number of rows of the matrix provided, the rows are looped
internally.

The waveform generator configuration object does not validate the initial state of the
scrambler.

Note: ScramblerInitialization applies to OFDM-based formats only.

Example: [3 56 120]

Data Types: double | int8

1-65

1 functions — Alphabetical List

'WindowTransitionTime' — Duration of the window transition
1.0e-07 (default) | positive scalar less than or equal to 6.4e-06

Duration of the window transition applied to each OFDM symbol, specified in seconds as
a positive scalar less than or equal to 1.6e-05. For a transition time of zero, no windowing
is applied.

The maximum permitted WindowTransitionTime value depends on the type of guard
interval, format and channel bandwidth:

Maximum Permitted WindowTransitionTime (seconds)Guard
Interval
Type

S1G VHT HT-mixed non-HT

 1, 2, 4, 8,
16 MHz

20, 40, 80,
160 MHz

20, 40 MHz 20 MHz 10 MHz 5 MHz

Long 1.6e-05 1.6e-06 1.6e-06 1.6e-06 3.2e-06 6.4e-06
Short 8.0e-06 8.0e-07 8.0e-07 not applicable

Data Types: double

Output Arguments

cfgWaveGen — Waveform generator configuration
wlanGeneratorConfig object

Waveform generator configuration, returned as a wlanGeneratorConfig object. The
properties of cfgWaveGen are specified in wlanGeneratorConfig Properties.

See Also
wlanWaveformGenerator

Introduced in R2015b

1-66

 wlanHTConfig

wlanHTConfig
Create HT format configuration object

Syntax

cfgHT = wlanHTConfig

cfgHT = wlanHTConfig(Name,Value)

Description

cfgHT = wlanHTConfig creates a configuration object that initializes parameters for
an IEEE 802.11 high throughput (HT) format “PPDU” on page 1-73.

cfgHT = wlanHTConfig(Name,Value) creates an HT format configuration object that
overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create HT Configuration Object with Default Settings

Create an HT configuration object. After creating the object update the number of
transmit antennas and space-time streams.

cfgHT = wlanHTConfig

cfgHT =

 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

1-67

1 functions — Alphabetical List

 SpatialMapping: 'Direct'

 MCS: 0

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 1024

 RecommendSmoothing: 1

Update the number of antennas to two, and number of space-time streams to four.

cfgHT.NumTransmitAntennas = 2;

cfgHT.NumSpaceTimeStreams = 4

cfgHT =

 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'

 NumTransmitAntennas: 2

 NumSpaceTimeStreams: 4

 SpatialMapping: 'Direct'

 MCS: 0

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 1024

 RecommendSmoothing: 1

Create wlanHTConfig Object

Create a wlanHTConfig object with a PSDU length of 2048 bytes, and using BCC
forward error correction.

cfgHT = wlanHTConfig('PSDULength',2048);

cfgHT.ChannelBandwidth = 'CBW20'

cfgHT =

 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

1-68

 wlanHTConfig

 SpatialMapping: 'Direct'

 MCS: 0

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 2048

 RecommendSmoothing: 1

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ChannelBandwidth','CBW40','NumTransmitAntennas',2

'ChannelBandwidth' — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

'NumTransmitAntennas' — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

'NumSpaceTimeStreams' — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

'NumExtensionStreams' — Number of extension spatial streams
0 (default) | 1 | 2 | 3

1-69

1 functions — Alphabetical List

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

'SpatialMapping' — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

'SpatialMappingMatrix' — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is
the number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams.
NT is the number of transmit antennas. In this case, each data and pilot subcarrier
can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

1-70

 wlanHTConfig

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix
having three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

'MCS' — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.

1-71

1 functions — Alphabetical List

Data Types: double

'GuardInterval' — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

'ChannelCoding' — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding, and 'LDPC' indicates low density
parity check coding.
Data Types: char | cell

'PSDULength' — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512

Data Types: double

'RecommendSmoothing' — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

1-72

 wlanHTConfig

Output Arguments

cfgHT — HT PPDU configuration
wlanHTConfig object

HT “PPDU” on page 1-73 configuration, returned as a wlanHTConfig object. The
properties of cfgHT are described in wlanHTConfig Properties.

More About

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTDataRecover | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig |
wlanWaveformGenerator

Introduced in R2015b

1-73

1 functions — Alphabetical List

wlanHTData
Generate HT-Data field waveform

Syntax

y = wlanHTData(psdu,cfg)

y = wlanHTData(psdu,cfg,scramInit)

Description

y = wlanHTData(psdu,cfg) generates the “HT-Data field” on page 1-796 time-
domain waveform for the input PLCP service data unit, psdu, and specified configuration
object, cfg. See “HT-Data Field Processing” on page 1-80 for waveform generation
details.

y = wlanHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate HT-Data Waveform

Generate the waveform signal for a 40 MHz HT-mixed data field with multiple transmit
antennas. Create an HT format configuration object. Specify 40 MHz channel bandwidth,
two transmit antennas, and two space-time streams.

cfgHT = wlanHTConfig('ChannelBandwidth','CBW40','NumTransmitAntennas',2,'NumSpaceTimeStreams', 2,'MCS',12)

cfgHT =

 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW40'

6. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-74

 wlanHTData

 NumTransmitAntennas: 2

 NumSpaceTimeStreams: 2

 SpatialMapping: 'Direct'

 MCS: 12

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 1024

 RecommendSmoothing: 1

Assign PSDULength bytes of random data to a bit stream and generate the HT data
waveform.

PSDU = randi([0 1],cfgHT.PSDULength*8,1);

y = wlanHTData(PSDU,cfgHT);

Determine the size of the waveform.

size(y)

ans =

 2080 2

The function returns a complex two-column time-domain waveform. Each column
contains 2080 samples, corresponding to the HT-Data field for each transmit antenna.

Input Arguments

psdu — PLCP Service Data Unit
vector

PLCP Service Data Unit (“PSDU” on page 1-80), specified as an Nb-by-1 vector. Nb is
the number of bits and equals PSDULength × 8.

Data Types: double

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTData function
uses the object properties indicated.

1-75

1 functions — Alphabetical List

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

1-76

 wlanHTData

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is
the number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams.
NT is the number of transmit antennas. In this case, each data and pilot subcarrier
can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix
having three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

1-77

1 functions — Alphabetical List

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.

1-78

 wlanHTData

By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512

Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.
Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.
Data Types: double | int8

Output Arguments

y — HT-Data field time-domain waveform
matrix

“HT-Data field” on page 1-79 time-domain waveform for HT-mixed format, returned
as an NS-by-NT matrix. NS is the number of time domain samples, and NT is the number
of transmit antennas.

More About

HT-Data field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed
packet.

1-79

1 functions — Alphabetical List

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for each encoding stream.
• Pad Bits — Variable-length field required to ensure that the HT-Data field consists

of an integer number of symbols.

PSDU

Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is
composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

Algorithms

HT-Data Field Processing

The “HT-Data field” on page 1-79 follows the last HT-LTF in the packet structure.

1-80

 wlanHTData

The “HT-Data field” on page 1-79 includes the user payload in the PSDU, plus 16
service bits, 6 × NES tail bits, and additional padding bits as required to fill out the last
OFDM symbol.

For algorithm details, refer to IEEE Std 802.11™-2012 [1], Section 20.3.11. The
wlanHTData function performs transmitter processing on the “HT-Data field” on page
1-79 and outputs the time-domain waveform for NT transmit antennas.

1-81

1 functions — Alphabetical List

NES is the number of BCC encoders.
NSS is the number of spatial streams.
NSTS is the number of space-time streams.
NT is the number of transmit antennas.

1-82

 wlanHTData

BCC channel coding is shown. STBC and spatial mapping are optional modes for HT
format.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTDataRecover | wlanHTLTF | wlanWaveformGenerator

Introduced in R2015b

1-83

1 functions — Alphabetical List

wlanHTDataRecover
Recover HT data

Syntax

recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg)

recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)

[recData,eqSym] = wlanHTDataRecover(___)

[recData,eqSym,cpe] = wlanHTDataRecover(___)

Description

recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns the
recovered “HT-Data field” on page 1-917, recData, for input signal rxSig. Specify
a channel estimate for the occupied subcarriers, chEst, a noise variance estimate,
noiseVarEst, and an “HT-Mixed” on page 1-92 format configuration object, cfg.

recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)

specifies algorithm information using wlanRecoveryConfig object cfgRec.

[recData,eqSym] = wlanHTDataRecover(___) also returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanHTDataRecover(___) also returns the common
phase error, cpe.

Examples

Recover HT-Data Bits

Create an HT configuration object having a PSDU length of 1024 bytes. Generate an
HTData sequence from a binary sequence whose length is eight times the length of the
PSDU.

7. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-84

 wlanHTDataRecover

cfgHT = wlanHTConfig('PSDULength',1024);

txBits = randi([0 1],8*cfgHT.PSDULength,1);

txHTSig = wlanHTData(txBits,cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.

rxHTSig = awgn(txHTSig,10);

Specify a channel estimate. Because fading was not introduced, a vector of ones is a
perfect estimate. For a 20 MHz bandwidth, there are 52 data subcarriers and 4 pilot
subcarriers in the HT-SIG field.

chEst = ones(56,1);

Recover the data bits and determine the number of bit errors. Display the number of bit
errors and the associated bit error rate.

rxBits = wlanHTDataRecover(rxHTSig,chEst,0.1,cfgHT);

[numerr,ber] = biterr(rxBits,txBits)

numerr =

 0

ber =

 0

Recover HT-Data Field Signal Using Zero-Forcing Algorithm

Create an HT configuration object having a 40 MHz channel bandwidth and a 1024-byte
PSDU length. Generate the corresponding HT-Data sequence.

cfgHT = wlanHTConfig('ChannelBandwidth','CBW40','PSDULength',1024);

txBits = randi([0 1],8*cfgHT.PSDULength,1);

txHTSig = wlanHTData(txBits, cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 7 dB.

rxHTSig = awgn(txHTSig,7);

Create a data recovery object that specifies the use of the zero-forcing algorithm.

1-85

1 functions — Alphabetical List

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the data and determine the number of bit errors. Because fading was not
introduced, the channel estimate is set to a vector of ones whose length is equal to the
number of occupied subcarriers.

rxBits = wlanHTDataRecover(rxHTSig,ones(114,1),0.2,cfgHT,cfgRec);

[numerr,ber] = biterr(rxBits,txBits)

numerr =

 0

ber =

 0

Input Arguments

rxSig — Received HT-Data signal
vector | matrix

Received HT-Data signal, specified as an NS-by-NR vector or matrix. NS is the number of
samples, and NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimate
vector | matrix | 3-D array

Channel estimate, specified as an NST-by-NSTS-by-NR array. NST is the number of
occupied subcarriers, NSTS is the number of space-time streams, and NR is the number of
receive antennas.
Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
scalar

1-86

 wlanHTDataRecover

Noise variance estimate, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTDataRecover
function uses the following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

1-87

1 functions — Alphabetical List

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

1-88

 wlanHTDataRecover

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512

Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object properties
include:

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

1-89

1 functions — Alphabetical List

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

MaximumLDPCIterationCount — Maximum number of decoding iterations in LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

1-90

 wlanHTDataRecover

Output Arguments
recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8×NPSDU, where
NPSDU is the length of the PSDU in bytes. See wlanHTConfig Properties for PSDULength
details.
Data Types: int8

eqSym — Equalized symbols
column vector | matrix | 3-D array

Equalized symbols, returned as an NSD-by-NSYM-by-NSS array. NSD is the number of data
subcarriers, NSYM is the number of OFDM symbols in the HT-Data field, and NSS is the
number of spatial streams.
Data Types: double
Complex Number Support: Yes

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the HT-Data field.

More About
HT-Data field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed
packet.

1-91

1 functions — Alphabetical List

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for each encoding stream.
• Pad Bits — Variable-length field required to ensure that the HT-Data field consists

of an integer number of symbols.

HT-Mixed

High throughput mixed (HT-mixed) format devices support a mixed mode in which the
PLCP header is compatible with HT and Non-HT modes.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanRecoveryConfig

Introduced in R2015b

1-92

 wlanHTLTF

wlanHTLTF

Generate HT-LTF waveform

Syntax

y = wlanHTLTF(cfg)

Description

y = wlanHTLTF(cfg) generates an “HT-LTF” on page 1-978 time-domain waveform
for “HT-mixed” on page 1-99 format transmissions given the parameters specified in
cfg.

Examples

Generate Single-Stream HT-LTF Waveform

Create a wlanHTConfig object having a channel bandwidth of 40 MHz.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

Generate the corresponding HT-LTF.

hltfOut = wlanHTLTF(cfg);

size(hltfOut)

ans =

 160 1

8. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-93

1 functions — Alphabetical List

The cfg parameters result in a 160-sample waveform having only one column
corresponding to a single stream transmission.

Generate HT-LTF with Four Space-Time Streams

Generate an HT-LTF having four transmit antennas and four space-time streams.

Create a wlanHTConfig object having an MCS of 31, four transmit antennas, and four
space-time streams.

cfg = wlanHTConfig('MCS',31,'NumTransmitAntennas',4,'NumSpaceTimeStreams',4)

cfg =

 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'

 NumTransmitAntennas: 4

 NumSpaceTimeStreams: 4

 SpatialMapping: 'Direct'

 MCS: 31

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 1024

 RecommendSmoothing: 1

Generate the corresponding HT-LTF.

hltfOut = wlanHTLTF(cfg);

Verify that the HT-LTF output consists of four streams (one for each antenna).

size(hltfOut)

ans =

 320 4

1-94

 wlanHTLTF

Because the channel bandwidth is 20 MHz and has four space-time streams, the output
waveform has four HT-LTF and 320 time-domain samples.

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTLTF function
uses these properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

1-95

1 functions — Alphabetical List

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is
the number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams.
NT is the number of transmit antennas. In this case, each data and pilot subcarrier
can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix
having three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

1-96

 wlanHTLTF

Output Arguments

y — HT-LTF waveform
matirx

HT-LTF waveform, returned as an (NS × NHTLTF)-by-NT matrix. NS is the number of time
domain samples per NHTLTF, where NHTLTF is the number of OFDM symbols in the “HT-
LTF” on page 1-97. NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. Each symbol contains 80 time samples per
20 MHz channel.

ChannelBandwidth NS

'CBW20' 80

'CBW40' 160

Determination of the number of NHTLTF is described in “HT-LTF” on page 1-97.

Data Types: double
Complex Number Support: Yes

More About

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and
data field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC

1-97

1 functions — Alphabetical List

is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has
one or two parts. The first part consists of one, two, or four HT-LTFs that are necessary
for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as
HT-DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can
be used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-
Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long
training symbol is 4 μs. The number of space-time streams and the number of extension
streams determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination

Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

NSS from
MCS

STBC
field

NSTS

1 0 1

1 1 2

2 0 2

2 1 3

2 2 4

3 0 3

3 1 4

4 0 4

NSTS NHTDLTF

1 1

2 2

3 4

4 4

NESS NHTELTF

0 0

1 1

2 2

3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.

1-98

 wlanHTLTF

• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-
mixed) format packets contain a preamble compatible with IEEE Std 802.11-2012,
Section 18 and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode
the non-HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG,
HT-STF, and HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs
cannot decode them. The HT portion of the packet is described in IEEE Std 802.11-2012,
Section 20.3.9.4. Support for the HT-mixed format is mandatory.

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTData | wlanHTLTFChannelEstimate |
wlanHTLTFDemodulate | wlanLLTF

Introduced in R2015b

1-99

1 functions — Alphabetical List

wlanHTLTFDemodulate
Demodulate HT-LTF waveform

Syntax

y = wlanHTLTFDemodulate(x,cfg)

y = wlanHTLTFDemodulate(x,cfg,OFDMSymbolOffset)

Description

y = wlanHTLTFDemodulate(x,cfg) returns the demodulated “HT-LTF” on page
1-1049, y, given received HT-LTF x. The input signal is a component of the “HT-mixed”
on page 1-105 format “PPDU” on page 1-105. The function demodulates the signal
using the information in the wlanHTConfig object, cfg.

y = wlanHTLTFDemodulate(x,cfg,OFDMSymbolOffset) specifies the OFDM symbol
sampling offset.

Examples

Demodulate HT-LTF in AWGN

Create an HT configuration object.

cfg = wlanHTConfig;

Generate an HT-LTF signal based on the object.

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,20);

Demodulate the received signal.

9. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-100

 wlanHTLTFDemodulate

z = wlanHTLTFDemodulate(y,cfg);

Display the scatter plot of the demodulated signal.

scatterplot(z)

Demodulate 2x2 HT-LTF with OFDM Symbol Offset

Create an HT configuration object having two transmit antennas and two space-time
streams.

cfg = wlanHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2, ...

 'MCS',8);

Generate the HT-LTF based on the configuration object.

1-101

1 functions — Alphabetical List

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,10);

Demodulate the received signal. Set the OFDM symbol offset to 0.5, which corresponds
to 1/2 of the cyclic prefix length.

z = wlanHTLTFDemodulate(y,cfg,0.5);

Input Arguments

x — Input signal
matrix

Input signal comprising an “HT-LTF” on page 1-104, specified as an NS-by-NR matrix.
NS is the number of samples and NR is the number of receive antennas. You can generate
the signal by using the wlanHTLTF function.

Data Types: double
Complex Number Support: Yes

cfg — HT format configuration
wlanHTConfig object

HT format configuration, specified as a wlanHTConfig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

1-102

 wlanHTLTFDemodulate

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

Output Arguments
y — Demodulated HT-LTF signal
matrix | 3-D array

Demodulated HT-LTF signal for an HT-Mixed PPDU, returned as an NST-by-NSYM-by-NR
matrix or array. NST is the number of data and pilot subcarriers. NSYM is the number of
OFDM symbols in the HT-LTF. NR is the number of receive antennas.

1-103

1 functions — Alphabetical List

Data Types: double
Complex Number Support: Yes

More About

HT-LTF

The high throughput long training field (HT-LTF) is located between the HT-STF and
data field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has
one or two parts. The first part consists of one, two, or four HT-LTFs that are necessary
for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as
HT-DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can
be used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-
Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long
training symbol is 4 μs. The number of space-time streams and the number of extension
streams determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination

Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

1-104

 wlanHTLTFDemodulate

NSTS Determination NHTDLTF Determination NHTELTF Determination

NSS from
MCS

STBC
field

NSTS

1 0 1

1 1 2

2 0 2

2 1 3

2 2 4

3 0 3

3 1 4

4 0 4

NSTS NHTDLTF

1 1

2 2

3 4

4 4

NESS NHTELTF

0 0

1 1

2 2

3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT-mixed

High throughput mixed (HT-mixed) format devices support a mixed mode in which the
PLCP header is compatible with HT and non-HT modes.

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

1-105

1 functions — Alphabetical List

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFChannelEstimate

Introduced in R2015b

1-106

 wlanHTSIG

wlanHTSIG

Generate HT-SIG waveform

Syntax

y = wlanHTSIG(cfg)

[y,bits] = wlanHTSIG(cfg)

Description

y = wlanHTSIG(cfg) generates an “HT-SIG” on page 1-11210 time-domain waveform
for “HT-mixed” on page 1-114 format transmissions given the parameters specified in
cfg.

[y,bits] = wlanHTSIG(cfg) returns the information bits, bits, that comprise the
HT-SIG field.

Examples

Generate HT-SIG Waveform

Generate an HT-SIG waveform for a single transmit antenna.

Create an HT configuration object. Specify a 40 MHz channel bandwidth.

cfg = wlanHTConfig;

cfg.ChannelBandwidth = 'CBW40'

cfg =

 wlanHTConfig with properties:

10. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-107

1 functions — Alphabetical List

 ChannelBandwidth: 'CBW40'

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

 SpatialMapping: 'Direct'

 MCS: 0

 GuardInterval: 'Long'

 ChannelCoding: 'BCC'

 PSDULength: 1024

 RecommendSmoothing: 1

Generate the HT-SIG waveform. Determine the size of the waveform.

y = wlanHTSIG(cfg);

size(y)

ans =

 320 1

The function returns a waveform having a complex output of 320 samples corresponding
to two 160-sample OFDM symbols.

Display MCS Information from HT-SIG

Generate an HT-SIG waveform and display the MCS information. Change the MCS and
display the updated information.

Create a wlanHTConfig object having two spatial streams and two transmit antennas.
Specify an MCS value of 8, corresponding to BPSK modulation and a coding rate of 1/2.

cfg = wlanHTConfig('NumSpaceTimeStreams',2,'NumTransmitAntennas',2,'MCS',8);

Generate the information bits from the HT-SIG waveform.

[~,sigBits] = wlanHTSIG(cfg);

Extract the MCS field from sigBits and convert it to its decimal equivalent. The MCS
information is contained in bits 1-7.

 mcsBits = sigBits(1:7);

1-108

 wlanHTSIG

 bi2de(mcsBits')

ans =

 int8

 8

The MCS matches the specified value.

Change the MCS to 13, which corresponds to 64-QAM modulation with a 2/3 coding rate.
Generate the HT-SIG waveform.

cfg.MCS = 13;

[~,sigBits] = wlanHTSIG(cfg);

Verify that the MCS bits are the binary equivalent of 13.

mcsBits = sigBits(1:7);

bi2de(mcsBits')

ans =

 int8

 13

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSIG function
uses these properties.

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

1-109

1 functions — Alphabetical List

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.
Data Types: double

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

1-110

 wlanHTSIG

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512

Data Types: double

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

1-111

1 functions — Alphabetical List

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

Output Arguments

y — HT-SIG waveform
matrix

HT-SIG waveform, returned as an NS-by-NT matrix. NS is the number of time-domain
samples, and NT is the number of transmit antennas.

Data Types: double
Complex Number Support: Yes

bits — HT-SIG information bits
vector

HT-SIG information bits, returned as a 48-by-1 vector.
Data Types: int8

More About

HT-SIG

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-
STF and is part of the HT-mixed format preamble. It is composed of two symbols, HT-
SIG1 and HT-SIG2.

1-112

 wlanHTSIG

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-
SIG field.

1-113

1 functions — Alphabetical List

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-
mixed) format packets contain a preamble compatible with IEEE Std 802.11-2012,
Section 18 and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode
the non-HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG,
HT-STF, and HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs
cannot decode them. The HT portion of the packet is described in IEEE Std 802.11-2012,
Section 20.3.9.4. Support for the HT-mixed format is mandatory.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTSIGRecover | wlanHTSTF | wlanLSIG

Introduced in R2015b

1-114

 wlanHTSIGRecover

wlanHTSIGRecover

Recover HT-SIG information bits

Syntax

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw)

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)

[recBits,failCRC] = wlanHTSIGRecover(___)

[recBits,failCRC,eqSym] = wlanHTSIGRecover(___)

[recBits,failCRC,eqSym,cpe] = wlanHTSIGRecover(___)

Description

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered information bits from the “HT-SIG” on page 1-12211 field and performs a
CRC check. Inputs include the channel estimate data chEst, noise variance estimate
noiseVarEst, and channel bandwidth cbw.

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)

specifies algorithm parameters using wlanRecoveryConfig object cfgRec.

[recBits,failCRC] = wlanHTSIGRecover(___) returns the result of the CRC
check, failCRC, using any of the arguments from the previous syntaxes.

[recBits,failCRC,eqSym] = wlanHTSIGRecover(___) returns the equalized
symbols, eqSym.

[recBits,failCRC,eqSym,cpe] = wlanHTSIGRecover(___) returns the common
phase error, cpe.

11. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-115

1 functions — Alphabetical List

Examples

Recover HT-SIG Information Bits in Perfect Channel

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

[txSig,txBits] = wlanHTSIG(cfg);

Because a perfect channel is assumed, specify the channel estimate as a column vector of
ones and the noise variance estimate as zero.

chEst = ones(104,1);

noiseVarEst = 0;

Recover the HT-SIG information bits. Verify that the received information bits are
identical to the transmitted bits.

rxBits = wlanHTSIGRecover(txSig,chEst,noiseVarEst,'CBW40');

numerr = biterr(txBits,rxBits)

numerr =

 0

Recover HT-SIG Using Zero-Forcing Equalizer

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

[txSig,txBits] = wlanHTSIG(cfg);

Pass the transmitted HT-SIG through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...

 'Variance',0.1);

rxSig = awgnChan(txSig);

1-116

 wlanHTSIGRecover

Use a zero-forcing equalizer by creating a wlanRecoveryConfig object with its
EqualizationMethod property set to 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the HT-SIG field. Verify that the received information has no bit errors.

rxBits = wlanHTSIGRecover(rxSig,ones(104,1),0.1,'CBW40',cfgRec);

biterr(txBits,rxBits)

ans =

 0

Recover HT-SIG in 2x2 MIMO Channel

Recover HT-SIG in a 2x2 MIMO channel with AWGN. Confirm that the CRC check
passes.

Configure a 2x2 MIMO TGn channel.

chanBW = 'CBW20';

cfg = wlanHTConfig(...

 'ChannelBandwidth',chanBW, ...

 'NumTransmitAntennas',2, ...

 'NumSpaceTimeStreams',2);

Generate L-LTF and HT-SIG waveforms.

txLLTF = wlanLLTF(cfg);

txHTSIG = wlanHTSIG(cfg);

Set the sample rate to correspond to the channel bandwidth. Create a TGn 2x2 MIMO
channel without large scale fading effects.

fsamp = 20e6;

tgnChan = wlanTGnChannel('SampleRate',fsamp, ...

 'LargeScaleFadingEffect','None', ...

 'NumTransmitAntennas',2, ...

 'NumReceiveAntennas',2);

Pass the L-LTF and HT-SIG waveforms through a TGn channel with white noise.

1-117

1 functions — Alphabetical List

rxLLTF = awgn(tgnChan(txLLTF),20);

rxHTSIG = awgn(tgnChan(txHTSIG),20);

Demodulate the L-LTF signal. Generate a channel estimate by using the demodulated L-
LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);

chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the information bits, the CRC failure status, and the equalized symbols from the
received HT-SIG field.

[recHTSIGBits,failCRC,eqSym] = wlanHTSIGRecover(rxHTSIG, ...

 chanEst,0.01,chanBW);

Verify that HT-SIG passed a CRC check by examining the status of failCRC.

failCRC

failCRC =

 logical

 0

Because failCRC is 0, HT-SIG passed the CRC check.

Visualize the scatter plot of the equalized symbols, eqSym.

scatterplot(eqSym(:))

1-118

 wlanHTSIGRecover

Input Arguments

rxSig — Received HT-SIG field
matrix

Received HT-SIG field, specified as an NS-by-NR matrix. NS is the number of samples and
increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 160
'CBW40' 320

1-119

1 functions — Alphabetical List

NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers and increases with channel bandwidth.

Channel Bandwidth NST

'CBW20' 52
'CBW40' 104

NR is the number of receive antennas.

The channel estimate is based on the “L-LTF” on page 1-124.

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties.

Note: If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

1-120

 wlanHTSIGRecover

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

1-121

1 functions — Alphabetical List

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

recBits — Recovered HT-SIG information
vector

Recovered HT-SIG information bits, returned as a 48-element column vector. The
number of elements corresponds to the length of the HT-SIG field.

failCRC — CRC failure status
true | false

CRC failure status, returned as a logical scalar. If HT-SIG fails the CRC check, failCRC
is true.

eqSym — Equalized symbols
matrix

Equalized symbols, returned as a 48-by-2 matrix corresponding to 48 data subcarriers
and 2 OFDM symbols.

cpe — Common phase error
column vector

Common phase error in radians, returned as a 2-by-1 column vector.

More About

HT-SIG

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-
STF and is part of the HT-mixed format preamble. It is composed of two symbols, HT-
SIG1 and HT-SIG2.

1-122

 wlanHTSIGRecover

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-
SIG field.

1-123

1 functions — Alphabetical List

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

The L-LTF duration varies with channel bandwidth.

1-124

 wlanHTSIGRecover

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTSIG | wlanRecoveryConfig

Introduced in R2015b

1-125

1 functions — Alphabetical List

wlanHTSTF
Generate HT-STF waveform

Syntax

y = wlanHTSTF(cfg)

Description

y = wlanHTSTF(cfg) generates an “HT-STF” on page 1-12912 time-domain
waveform for “HT-mixed” on page 1-129 format transmissions, given the parameters
specified in cfg.

Examples

Generate HT Short Training Field

Create a wlanHTConfig object with a 40 MHz bandwidth.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

Generate an HT-STF. The function returns a complex output of 160 samples.

stf = wlanHTSTF(cfg);

size(stf)

ans =

 160 1

Change the channel bandwidth to 20 MHz and create a new HT-STF.

cfg.ChannelBandwidth = 'CBW20';

12. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-126

 wlanHTSTF

stf = wlanHTSTF(cfg);

Verify that the number of samples has been halved due to the bandwidth reduction.

size(stf)

ans =

 80 1

Input Arguments

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSTF function
uses these properties.

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

1-127

1 functions — Alphabetical List

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is
the number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams.
NT is the number of transmit antennas. In this case, each data and pilot subcarrier
can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix
having three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

1-128

 wlanHTSTF

Output Arguments

y — HT-STF waveform
matrix

HT-STF waveform, returned as an NS-by-NT matrix. NS is the number of samples, and
NT is the number of transmit antennas.

Data Types: double
Complex Number Support: Yes

More About

HT-STF

The high throughput short training field (HT-STF) is located between the HT-SIG
and HT-LTF fields of an HT-mixed packet. The HT-STF is 4 μs in length and is used
to improve automatic gain control estimation for a MIMO system. For a 20 MHz
transmission, the frequency sequence used to construct the HT-STF is identical to that
of the L-STF. For a 40 MHz transmission, the upper subcarriers of the HT-STF are
constructed from a frequency-shifted and phase-rotated version of the L-STF.

HT-mixed

As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-
mixed) format packets contain a preamble compatible with IEEE Std 802.11-2012,
Section 18 and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode
the non-HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG,
HT-STF, and HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs
cannot decode them. The HT portion of the packet is described in IEEE Std 802.11-2012,
Section 20.3.9.4. Support for the HT-mixed format is mandatory.

1-129

1 functions — Alphabetical List

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanHTLTF | wlanHTSIG | wlanLSTF

Introduced in R2015b

1-130

 wlanLLTF

wlanLLTF

Generate L-LTF waveform

Syntax

y = wlanLLTF(cfg)

Description

y = wlanLLTF(cfg) generates an “L-LTF” on page 1-13413 time-domain waveform
for the specified configuration object.

Examples

Generate L-LTF Waveform

Generate the L-LTF for a 40 MHz single antenna VHT packet.

cfgVHT = wlanVHTConfig('ChannelBandwidth', 'CBW40');

y = wlanLLTF(cfgVHT);

size(y)

plot(abs(y))

xlabel('Samples')

ylabel('Amplitude')

ans =

 320 1

13. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-131

1 functions — Alphabetical List

The output L-LTF waveform contains 320 time-domain samples for a 40 MHz channel
bandwidth.

Input Arguments

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLLTF function uses only the
object properties indicated.

1-132

 wlanLLTF

Transmission Format Configuration Object Applicable Object Properties

VHT wlanVHTConfig ChannelBandwidth,
NumTransmitAntennas

HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas

non-HT
See note 1

wlanNonHTConfig ChannelBandwidth,
NumTransmitAntennas

Note:

1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-LTF time-domain waveform
matrix

“L-LTF” on page 1-134 time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160

'CBW40' 320

'CBW80' 640

'CBW160' 1280

Data Types: double
Complex Number Support: Yes

1-133

1 functions — Alphabetical List

More About

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

1-134

 wlanLLTF

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Algorithms

The “L-LTF” on page 1-134 is two OFDM symbols long and follows the L-STF of
the preamble in the packet structure for the VHT, HT, and non-HT formats. For
algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.3 and IEEE Std
802.11-2012 [2], Section 20.3.9.3.4.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG |
wlanLSTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1-135

1 functions — Alphabetical List

wlanLLTFDemodulate

Demodulate L-LTF waveform

Syntax

y = wlanLLTFDemodulate(x,cbw)

y = wlanLLTFDemodulate(x,cfg)

y = wlanLLTFDemodulate(___ ,symOffset)

Description

y = wlanLLTFDemodulate(x,cbw) returns the demodulated “L-LTF” on page
1-13914 waveform given time-domain input signal x and channel bandwidth cbw.

y = wlanLLTFDemodulate(x,cfg) returns the demodulated L-LTF given the format
configuration object, cfg.

y = wlanLLTFDemodulate(___ ,symOffset) specifies the OFDM symbol offset,
symOffset, using any of the arguments from the previous syntaxes.

Examples

Demodulate L-LTF for Non-HT Format Transmission

Demodulate the L-LTF used in a non-HT OFDM transmission, after passing the L-LTF
through an AWGN channel.

Create a non-HT configuration object and use it to generate an L-LTF signal.

cfg = wlanNonHTConfig;

txSig = wlanLLTF(cfg);

14. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-136

 wlanLLTFDemodulate

Pass the L-LTF signal through an AWGN channel. Demodulate the received signal.

rxSig = awgn(txSig,15,'measured');

y = wlanLLTFDemodulate(rxSig,'CBW20');

Demodulate L-LTF for VHT Format Transmission

Demodulate the L-LTF used in a VHT transmission, after passing the L-LTF through an
AWGN channel.

Create a VHT configuration object and use it to generate an L-LTF signal.

cfg = wlanVHTConfig;

txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.

rxSig = awgn(txSig,5);

Demodulate the received L-LTF using the information from the wlanVHTConfig object.

y = wlanLLTFDemodulate(rxSig,cfg);

Demodulate L-LTF with OFDM Symbol Offset

Demodulate the L-LTF for the HT-mixed transmission format, given a custom OFDM
symbol offset.

Set the channel bandwidth to 40 MHz and the OFDM symbol offset to 1. That way, the
FFT takes place after the guard interval.

cbw = 'CBW40';

ofdmSymOffset = 1;

Create an HT configuration object and use it to generate an L-LTF signal.

cfg = wlanHTConfig('ChannelBandwidth',cbw);

txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.

rxSig = awgn(txSig,10);

Demodulate the received L-LTF using a custom OFDM symbol offset.

1-137

1 functions — Alphabetical List

y = wlanLLTFDemodulate(rxSig,'CBW40',ofdmSymOffset);

Input Arguments

x — Time-domain input signal
vector | matrix

Time-domain input signal corresponding to the L-LTF of the “PPDU” on page 1-141,
specified as an NS-by-NR vector or matrix. NS is the number of samples and NR is the
number of receive antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160

'CBW40' 320

'CBW80' 640

'CBW160' 1280

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

Data Types: char

cfg — Format information
wlanNonHTConfig | wlanHTConfig | wlanVHTConfig

Format information, specified as a WLAN configuration object. To create these objects,
see wlanNonHTConfig, wlanHTConfig, or wlanVHTConfig.

1-138

 wlanLLTFDemodulate

symOffset — OFDM symbol offset
0.75 (default) | real scalar from 0 to 1

OFDM symbol offset as a fraction of the cyclic prefix length, specified as a real scalar
from 0 to 1.
Data Types: double

Output Arguments

y — Demodulated L-LTF signal
3-D OFDM symbol array

Demodulated L-LTF signal, returned as an NST-by-NSYM-by-NR array. NST is the number
of occupied subcarriers, NSYM is the number of OFDM symbols, and NR is the number of
receive antennas. For the L-LTF, NSYM is always 2.

NST varies with channel bandwidth.

ChannelBandwidth Number of Occupied Subcarriers (NST)

'CBW20', 'CBW10', 'CBW5' 52

'CBW40' 104

'CBW80' 208

'CBW160' 416

More About

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

1-139

1 functions — Alphabetical List

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

The L-LTF duration varies with channel bandwidth.

1-140

 wlanLLTFDemodulate

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

PPDU

The PLCP protocol data unit (PPDU) is the complete “PLCP” on page 1-141 frame,
including PLCP headers, MAC headers, the MAC data field, and the MAC and PLCP
trailers [2].

PLCP

The physical layer convergence procedure (PLCP) is the upper component of the physical
layer in 802.11 networks. Each physical layer has its own PLCP, which provides
auxiliary framing to the MAC [2].

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Gast, Matthew S. 802.11n: A Survival Guide. Sebastopol, CA: O’Reilly Media Inc.,
2012, p. 120.

See Also
wlanLLTF | wlanLLTFChannelEstimate

Introduced in R2015b

1-141

1 functions — Alphabetical List

wlanLSIG
Generate L-SIG waveform

Syntax

[y, bits] = wlanLSIG(cfgFormat)

Description

[y, bits] = wlanLSIG(cfgFormat) generates an “L-SIG” on page 1-14615 time-
domain waveform using the specified configuration object.

Examples

Generate L-SIG Waveform for 80 MHz VHT Packet

Generate the L-SIG waveform for an 80 MHz VHT transmission format packet.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW80';

lsigOut = wlanLSIG(cfgVHT);

size(lsigOut)

ans =

 320 1

The L-SIG waveform returned contains one symbol with 320 complex samples for an 80
MHz channel bandwidth.

Extract Rate Information from L-SIG

Create a non-HT configuration object. The default MCS is 0.

15. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-142

 wlanLSIG

cfg = wlanNonHTConfig

cfg =

 wlanNonHTConfig with properties:

 Modulation: 'OFDM'

 ChannelBandwidth: 'CBW20'

 MCS: 0

 PSDULength: 1000

 NumTransmitAntennas: 1

Generate the L-SIG waveform and information bits. Extract the rate from the returned
bits. The rate information is contained in the first four bits.

[y,bits] = wlanLSIG(cfg);

rateBits = bits(1:4)

rateBits =

 4×1 int8 column vector

 1

 1

 0

 1

As defined in IEEE Std 802.11™-2012, Table 18-6, a value of [1 1 0 1] corresponds to
a rate of 6 Mbps for 20 MHz channel spacing.

Change MCS to 7 then regenerate the L-SIG waveform and information bits. Extract the
rate from the returned bits and analyze. The rate information is contained in the first
four bits.

cfg.MCS = 7

[y,bits] = wlanLSIG(cfg);

rateBits = bits(1:4)

cfg =

1-143

1 functions — Alphabetical List

 wlanNonHTConfig with properties:

 Modulation: 'OFDM'

 ChannelBandwidth: 'CBW20'

 MCS: 7

 PSDULength: 1000

 NumTransmitAntennas: 1

rateBits =

 4×1 int8 column vector

 0

 0

 1

 1

As defined in IEEE Std 802.11-2012, Table 18-6, a value of [0 0 1 1] corresponds to a
rate of 54 Mbps for 20 MHz channel spacing.

Input Arguments
cfgFormat — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLSIG function uses only the
object properties indicated.

Transmission Format Configuration Object Applicable Object Properties

VHT wlanVHTConfig ChannelBandwidth,
NumUsers,
NumTransmitAntennas,
NumSpaceTimeStreams,
STBC, MCS, ChannelCoding,
APEPLength,
GuardInterval

HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas,

1-144

 wlanLSIG

Transmission Format Configuration Object Applicable Object Properties

NumSpaceTimeStreams,
MCS, GuardInterval,
ChannelCoding,
PSDULength

non-HT

See note 1 and 2

wlanNonHTConfig ChannelBandwidth,
Modulation,
MCS, PSDULength,
NumTransmitAntennas

Note:

1 Only OFDM modulation is supported for a wlanNonHTConfig object input.
2 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,

NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-SIG time-domain waveform
matrix

“L-SIG” on page 1-146 time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 80

'CBW40' 160

'CBW80' 320

'CBW160' 640

Data Types: double
Complex Number Support: Yes

1-145

1 functions — Alphabetical List

bits — Signaling bits
column vector

Signaling bits from the legacy signal field, returned as a 24-by-1 bit column vector. See
“L-SIG” on page 1-146 for the bit field description.
Data Types: int8

More About

L-SIG

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The
L-SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + TFFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

10 156.25 6.4 μs 1.6 μs 8 μs

1-146

 wlanLSIG

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + TFFT)

5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Data Rate (Mb/s)Rate (bits
0–3)

Modulation Coding
rate (R) 20 MHz

channel
bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

1-147

1 functions — Alphabetical List

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std
802.11-2012, Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note: Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those
formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

Algorithms

The “L-SIG” on page 1-146 follows the L-STF and L-LTF of the preamble in the packet
structure.

1-148

 wlanLSIG

For “L-SIG” on page 1-146 transmission processing algorithm details, see:

• VHT format – refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.4
• HT format – refer to IEEE Std 802.11-2012 [2], Sections 20.3.9.3.5
• non-HT format – refer to IEEE Std 802.11-2012 [2], Sections 18.3.4

The wlanLSIG function performs transmitter processing on the “L-SIG” on page 1-146
field and outputs the time-domain waveform.

1-149

1 functions — Alphabetical List

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

1-150

 wlanLSIG

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanLLTF | wlanLSIGRecover | wlanNonHTConfig |
wlanVHTConfig

Introduced in R2015b

1-151

1 functions — Alphabetical List

wlanLSIGRecover

Recover L-SIG information bits

Syntax

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw)

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)

[recBits,failCheck] = wlanLSIGRecover(___)

[recBits,failCheck,eqSym] = wlanLSIGRecover(___)

[recBits,failCheck,eqSym,cpe] = wlanLSIGRecover(___)

Description

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered “L-SIG” on page 1-16016 information bits, recBits, given the time-domain
L-SIG waveform, rxSig. Specify the channel estimate, chEst, the noise variance
estimate, noiseVarEst, and the channel bandwidth, cbw.

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec) returns
information bits and specifies algorithm information using wlanRecoveryConfig object
cfgRec.

[recBits,failCheck] = wlanLSIGRecover(___) returns the status of a validity
check, failCheck, using the arguments from previous syntaxes.

[recBits,failCheck,eqSym] = wlanLSIGRecover(___) returns the equalized
symbols, eqSym.

[recBits,failCheck,eqSym,cpe] = wlanLSIGRecover(___) returns the common
phase error, cpe.

16. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-152

 wlanLSIGRecover

Examples

Recover L-SIG Information from 2x2 MIMO Channel

Recover L-SIG information transmitted in a noisy 2x2 MIMO channel, and calculate the
number of bit errors present in the received information bits.

Set the channel bandwidth and sample rate.

chanBW = 'CBW40';

fs = 40e6;

Create a VHT configuration object corresponding to a 40 MHz 2x2 MIMO channel.

vht = wlanVHTConfig(...

 'ChannelBandwidth',chanBW, ...

 'NumTransmitAntennas',2, ...

 'NumSpaceTimeStreams',2);

Generate the L-LTF and L-SIG field signals.

txLLTF = wlanLLTF(vht);

[txLSIG,txLSIGData] = wlanLSIG(vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',chanBW, ...

 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...

 'SNR',10);

Pass the signals through the noisy 2x2 multipath fading channel.

rxLLTF = chNoise(tgacChan(txLLTF));

rxLSIG = chNoise(tgacChan(txLSIG));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The
noise variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise
figure.

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);

rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

1-153

1 functions — Alphabetical List

rxLLTF = rxNoise(rxLLTF);

rxLSIG = rxNoise(rxLSIG);

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);

chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the L-SIG information bits.

rxLSIGData = wlanLSIGRecover(rxLSIG,chanEst,0.1,chanBW);

Verify that there are no bit errors in the recovered L-SIG data.

numErrors = biterr(txLSIGData,rxLSIGData)

numErrors =

 0

Recover L-SIG with Zero Forcing Equalizer

Recover L-SIG information using the zero-forcing equalizer algorithm. Calculate the
number of bit errors in the received data.

Create an HT configuration object.

cfgHT = wlanHTConfig;

Create a recovery object with EqualizationMethod property set to zero forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Generate the L-SIG field and pass it through an AWGN channel.

[txLSIG,txLSIGData] = wlanLSIG(cfgHT);

rxLSIG = awgn(txLSIG,20);

Recover the L-SIG using the zero-forcing algorithm set in cfgRec. The channel estimate
is a vector of ones because fading was not introduced.

rxLSIGData = wlanLSIGRecover(rxLSIG,ones(52,1),0.01,'CBW20',cfgRec);

Verify that there are no bit errors in the recovered L-SIG data.

numErrors = biterr(txLSIGData,rxLSIGData)

1-154

 wlanLSIGRecover

numErrors =

 0

Recover L-SIG from Phase and Frequency Offset

Recover the L-SIG from a channel that introduces a fixed phase and frequency offset.

Create a VHT configuration object corresponding to a 160 MHz SISO channel. Generate
the transmitted L-SIG field.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW160');

txLSIG = wlanLSIG(cfgVHT);

Create a recovery configuration object and disable pilot phase tracking.

cfgRec = wlanRecoveryConfig('PilotPhaseTracking','None');

To introduce a 45 degree phase offset and a 100 Hz frequency offset, create a phase and
frequency offset System object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',160e6,'PhaseOffset',45, ...

 'FrequencyOffset',100);

Introduce phase and frequency offsets to the transmitted L-SIG. Pass the L-SIG through
an AWGN channel.

rxLSIG = awgn(pfOffset(txLSIG),20);

Recover the L-SIG information bits, the failure check status, and the equalized symbols.

[recLSIGData,failCheck,eqSym] = wlanLSIGRecover(rxLSIG,ones(416,1),0.01,'CBW160',cfgRec);

Verify that the L-SIG passed the failure checks.

failCheck

failCheck =

 logical

 0

1-155

1 functions — Alphabetical List

Plot the equalized symbols. The 45 degree phase offset is visible.

scatterplot(eqSym)

grid

Input Arguments

rxSig — Received L-SIG field
vector | matrix

Received L-SIG field, specified as an NS-by-NR matrix. NS is the number of samples, and
NR is the number of receive antennas.

1-156

 wlanLSIGRecover

NS is proportional to the channel bandwidth.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 80

'CBW40' 160

'CBW80' 320

'CBW160' 640

Data Types: double
Complex Number Support: Yes

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers, and NR is the number of receive antennas.

Channel Bandwidth NST

'CBW5', 'CBW10', 'CBW20' 52
'CBW40' 104
'CBW80' 208
'CBW160' 416

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

Example: 'CBW80' corresponds to a channel bandwidth of 80 MHz

1-157

1 functions — Alphabetical List

Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

Note: If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

1-158

 wlanLSIGRecover

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

recBits — Recovered L-SIG information
binary vector

Recovered L-SIG information bits, returned as a 24-element column vector containing
binary data. The 24 elements correspond to the length of the L-SIG field.
Data Types: int8

failCheck — Failure check status
true | false

Failure check status, returned as a logical scalar. If L-SIG fails the parity check, or if its
first four bits do not correspond to one of the eight allowable data rates, failCheck is
true.

Data Types: logical

eqSym — Equalized symbols
vector

Equalized symbols, returned as 48-by-1 vector. There are 48 data subcarriers in the L-
SIG field.

1-159

1 functions — Alphabetical List

Data Types: double
Complex Number Support: Yes

cpe — Common phase error
column vector

Common phase error in radians, returned as a scalar.

More About

L-SIG

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The
L-SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + TFFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

10 156.25 6.4 μs 1.6 μs 8 μs

1-160

 wlanLSIGRecover

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI + TFFT)

5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Data Rate (Mb/s)Rate (bits
0–3)

Modulation Coding
rate (R) 20 MHz

channel
bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

1-161

1 functions — Alphabetical List

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std
802.11-2012, Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note: Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those
formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG

Introduced in R2015b

1-162

 wlanLSTF

wlanLSTF

Generate L-STF waveform

Syntax

y = wlanLSTF(cfg)

Description

y = wlanLSTF(cfg) generates an “L-STF” on page 1-16617 time-domain waveform
using the specified configuration object.

Examples

Generate L-STF Waveform

Generate the L-STF waveform for a 40 MHz single antenna VHT packet.

Create a VHT configuration object. Use this object to generate the L-STF waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW40');

y = wlanLSTF(cfgVHT);

size(y)

plot(abs(y))

xlabel('Samples')

ylabel('Amplitude')

ans =

 320 1

17. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-163

1 functions — Alphabetical List

The output L-STF waveform contains 320 samples for a 40 MHz channel bandwidth.

Input Arguments

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLSTF function uses only the
object properties indicated.

1-164

 wlanLSTF

Transmission Format Applicable Object Properties

VHT ChannelBandwidth,
NumTransmitAntennas

HT ChannelBandwidth,
NumTransmitAntennas

non-HT
See note 1

ChannelBandwidth,
NumTransmitAntennas

Note:

1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments

y — L-STF time-domain waveform
matrix

(“L-STF” on page 1-166) time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160

'CBW40' 320

'CBW80' 640

'CBW160' 1280

Data Types: double
Complex Number Support: Yes

1-165

1 functions — Alphabetical List

More About

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT) period
(TFFT = 1 / ΔF)

L-STF duration
(TSHORT = 10 × TFFT / 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses
12 of the 52 subcarriers that are available per 20 MHz channel bandwidth segment.
The number of channel bandwidths segments is one for 5 MHz, 10 MHz, and 20 MHz
bandwidths.

Algorithms

The “L-STF” on page 1-166 is two OFDM symbols long and is the first field in the
packet structure for the VHT, HT, and non-HT OFDM formats. For algorithm details,
refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.2.

1-166

 wlanLSTF

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanHTConfig | wlanLLTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1-167

1 functions — Alphabetical List

wlanNonHTConfig
Create non-HT format configuration object

Syntax
cfgNonHT = wlanNonHTConfig

cfgNonHT = wlanNonHTConfig(Name,Value)

Description
cfgNonHT = wlanNonHTConfig creates a configuration object that initializes
parameters for an IEEE 802.11 non-high throughput (non-HT) format “PPDU” on page
1-175.

For non-HT, subcarrier spacing and subcarrier allocation have channel bandwidth
dependencies. For more information, see “OFDM PLCP Timing Parameters” on page
1-173.

cfgNonHT = wlanNonHTConfig(Name,Value) creates a non-HT format configuration
object that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create Non-HT Configuration Object with Default Settings

Create a non-HT configuration object with default settings. After creating the object
update the number of transmit antennas.

cfgNHT = wlanNonHTConfig

cfgNHT =

 wlanNonHTConfig with properties:

1-168

 wlanNonHTConfig

 Modulation: 'OFDM'

 ChannelBandwidth: 'CBW20'

 MCS: 0

 PSDULength: 1000

 NumTransmitAntennas: 1

Update the number of transmit antennas to two.

cfgNHT.NumTransmitAntennas = 2

cfgNHT =

 wlanNonHTConfig with properties:

 Modulation: 'OFDM'

 ChannelBandwidth: 'CBW20'

 MCS: 0

 PSDULength: 1000

 NumTransmitAntennas: 2

Create Non-HT Format Configuration Object

Create a wlanNonHTConfig object for OFDM operation for a PSDU length of 2048 bytes.

cfgNHT = wlanNonHTConfig('Modulation','OFDM');

cfgNHT.PSDULength = 2048;

cfgNHT

cfgNHT =

 wlanNonHTConfig with properties:

 Modulation: 'OFDM'

 ChannelBandwidth: 'CBW20'

 MCS: 0

 PSDULength: 2048

 NumTransmitAntennas: 1

Create Non-HT Format Configuration Object for DSSS Modulation

Create a wlanNonHTConfig object for DSSS operation for a PSDU length of 2048 bytes.

1-169

1 functions — Alphabetical List

cfgNHT = wlanNonHTConfig('Modulation','DSSS','PSDULength',2048)

cfgNHT =

 wlanNonHTConfig with properties:

 Modulation: 'DSSS'

 DataRate: '1Mbps'

 LockedClocks: 1

 PSDULength: 2048

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Modulation','OFDM','MCS',7 specifies OFDM modulation with a
modulation and coding scheme of 7, which assigns 64QAM and a 3/4 coding rate for the
non-HT format packet.

'Modulation' — Modulation type for non-HT transmission
'OFDM' (default) | 'DSSS'

Modulation type for the non-HT transmission packet, specified as 'OFDM' or 'DSSS'.

Data Types: char

'ChannelBandwidth' — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.

1-170

 wlanNonHTConfig

Data Types: char

'MCS' — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

Data Rate (Mbps)MCS Modulation Coding
Rate

Coded
bits per

subcarrier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

0 BPSK 1/2 1 48 24 6 3 1.5

1 BPSK 3/4 1 48 36 9 4.5 2.25

2 QPSK 1/2 2 96 48 12 6 3

3 QPSK 3/4 2 96 72 18 9 4.5

4 16QAM 1/2 4 192 96 24 12 6

5 16QAM 3/4 4 192 144 36 18 9

6 64QAM 2/3 6 288 192 48 24 12

7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

'DataRate' — DSSS modulation data rate
'1Mbps' (default) | '2Mbps' | '5.5Mbps' | '11Mbps'

DSSS modulation data rate, specified as '1Mbps', '2Mbps', '5.5Mbps', or '11Mbps'.

• '1Mbps' uses differential binary phase shift keying (DBPSK) modulation with a 1
Mbps data rate.

• '2Mbps' uses differential quadrature phase shift keying (DQPSK) modulation with a
2 Mbps data rate.

• '5.5Mbps' uses complementary code keying (CCK) modulation with a 5.5 Mbps data
rate.

1-171

1 functions — Alphabetical List

• '11Mbps' uses complementary code keying (CCK) modulation with an 11 Mbps data
rate.

For IEEE Std 802.11-2012, Section 16, only '1Mbps' and '2Mbps' apply

Data Types: char

'Preamble' — DSSS modulation preamble type
'Long' (default) | 'Short'

DSSS modulation preamble type, specified as 'Long' or 'Short'.

• When DataRate is '1Mbps', the Preamble setting is ignored and 'Long' is used.
• When DataRate is greater than '1Mbps', the Preamble property is available and

can be set to 'Long' or 'Short'.

For IEEE Std 802.11-2012, Section 16, 'Short' does not apply.

Data Types: char

'LockedClocks' — Clock locking indication for DSSS modulation
true (default) | false

Clock locking indication for DSSS modulation, specified as a logical. Bit 2 of the
SERVICE field is the Locked Clock Bit. A true setting indicates that the PHY
implementation derives its transmit frequency clock and symbol clock from the same
oscillator. For more information, see IEEE Std 802.11-2012, Section 17.2.3.5 and Section
19.1.3.

Note:

• IEEE Std 802.11-2012, Section 19.3.2.2, specifies locked clocks is required for all
ERP systems when transmitting at the ERP-PBCC rate or at a data rate described in
Section 17. Therefore to model ERP systems, set LockedClocks to true.

Data Types: logical

'PSDULength' — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.

1-172

 wlanNonHTConfig

Data Types: double

'NumTransmitAntennas' — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

Output Arguments

cfgNonHT — Non-HT PPDU configuration
wlanNonHTConfig object

Non-HT “PPDU” on page 1-175 configuration, returned as a wlanNonHTConfig object.
The properties of cfgNonHT are specified in wlanNonHTConfig Properties.

More About

OFDM PLCP Timing Parameters

IEEE Std 802.11™-2012 [1], Section 1818 specifies OFDM PLCP 20 MHz, 10 MHz, and 5
MHz channel bandwidth operation.

Timing parameters associated with the OFDM PLCP are listed in IEEE Std
802.11™-2012 [1], Table 18-5.

Parameter Value 20 MHz channel
bandwidth

10 MHz channel
bandwidth

5 MHz channel
bandwidth

NSD: Number of
data subcarriers

48 48 48 48

NSP: Number of
pilot subcarriers

4 4 4 4

18. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-173

1 functions — Alphabetical List

Parameter Value 20 MHz channel
bandwidth

10 MHz channel
bandwidth

5 MHz channel
bandwidth

NST: Number
of subcarriers,
total

NSD + NSP 52 52 52

ΔF: Subcarrier
frequency
spacing

(Channel BW in
MHz) / 64

0.3125 MHz
(= 20 / 64)

0.15625 MHz
(= 10 / 64)

0.078125
MHz (= 5 / 64)

TFFT: Inverse
Fast Fourier
Transform
(IFFT) /
Fast Fourier
Transform
(FFT) period

1 / ΔF 3.2 μs 6.4 μs 12.8 μs

TPREAMBLE:
PLCP preamble
duration

TSHORT + TLONG 16 μs 32 μs 64 μs

TSIGNAL:
Duration of the
L-SIG symbol

TGI + TFFT 4.0 μs 8.0 μs 16.0 μs

TGI: GI duration TFFT/4 0.8 μs 1.6μs 3.2 μs
TGI2: Training
symbol GI
duration

TFFT/2 1.6 μs 3.2μs 6.4 μs

TSYM: Symbol
interval

TGI + TFFT 4 μs 8 μs 16 μs

TSHORT: L-STF
duration

10 × TFFT /4 8 μs 16 μs 32 μs

TLONG: L-LTF
duration

TGI2 + 2 × TFFT 8 μs 16 μs 32 μs

1-174

 wlanNonHTConfig

Parameter Value 20 MHz channel
bandwidth

10 MHz channel
bandwidth

5 MHz channel
bandwidth

Note: The standard refers to operation at:

• 10 MHz as “half-clocked”.

• 5 MHz as “quarter-clocked”.

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanS1GConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2015b

1-175

1 functions — Alphabetical List

wlanNonHTData
Generate non-HT-Data field waveform

Syntax

y = wlanNonHTData(psdu,cfg)

y = wlanNonHTData(psdu,cfg,scramInit)

Description

y = wlanNonHTData(psdu,cfg) generates the “non-HT-Data field” on page 1-17919

time-domain waveform for the input “PSDU” on page 1-179 bits.

y = wlanNonHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate Non-HT-Data Waveform

Generate the waveform for a 20MHz non-HT-Data field for 36 Mbps.

Create a non-HT configuration object and assign MCS to 5.

cfg = wlanNonHTConfig('MCS',5);

Assign random data to the PSDU and generate the data field waveform.

psdu = randi([0 1],cfg.PSDULength*8,1);

y = wlanNonHTData(psdu,cfg);

size(y)

ans =

19. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-176

 wlanNonHTData

 4480 1

Input Arguments

psdu — PLCP service data unit
vector

PLCP service data unit (“PSDU” on page 1-179), specified as an Nbits-by-1 vector,
where Nbits = PSDULength × 8. “PSDU” on page 1-179 vector can range from 1 byte to
4095 bytes, as specified by PSDULength.

Data Types: double

cfg — Format configuration
wlanNonHTConfig object

Format configuration, specified as a wlanNonHTConfig object. The wlanNonHTData
function uses the wlanNonHTConfig object properties associated with the 'OFDM'
setting for Modulation.

Non-HT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.

Data Types: char

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

1-177

1 functions — Alphabetical List

Data Rate (Mbps)MCS Modulation Coding
Rate

Coded
bits per

subcarrier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

0 BPSK 1/2 1 48 24 6 3 1.5

1 BPSK 3/4 1 48 36 9 4.5 2.25

2 QPSK 1/2 2 96 48 12 6 3

3 QPSK 3/4 2 96 72 18 9 4.5

4 16QAM 1/2 4 192 96 24 12 6

5 16QAM 3/4 4 192 144 36 18 9

6 64QAM 2/3 6 288 192 48 24 12

7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

1-178

 wlanNonHTData

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.
Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.
Data Types: double | int8

Output Arguments

y — Non-HT-Data field time-domain waveform
matrix

Non-HT-Data field time-domain waveform, returned as an NS-by-NT matrix. NS is the
number of time domain samples, and NT is the number of transmit antennas.

More About

PSDU

Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is
composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

non-HT-Data field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and
is composed of a service field, a PSDU, tail bits, and pad bits.

1-179

1 functions — Alphabetical List

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

Algorithms

non-HT-Data Field Processing

The “non-HT-Data field” on page 1-179 follows the L-SIG in the packet structure. For
algorithm details, refer to IEEE Std 802.11-2012 [1], Section 18.3.5. The “non-HT-Data
field” on page 1-179 includes the user payload in the PSDU plus 16 service bits, 6
tail bits, and additional padding bits as required to fill out the last OFDM symbol. The
wlanNonHTData function performs transmitter processing on the “non-HT-Data field” on
page 1-179 and outputs the time-domain waveform.

1-180

 wlanNonHTData

1-181

1 functions — Alphabetical List

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanLSIG | wlanNonHTConfig | wlanNonHTDataRecover

Introduced in R2015b

1-182

 wlanNonHTDataRecover

wlanNonHTDataRecover

Recover non-HT data

Syntax

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg)

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)

[recData,eqSym] = wlanNonHTDataRecover(___)

[recData,eqSym,cpe] = wlanNonHTDataRecover(___)

Description

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns
the recovered “Non-HT-Data field” on page 1-19020 bits, given received signal
rxSig, channel estimate data chEst, noise variance estimate noiseVarEst, and
wlanNonHTConfig object cfg.

Note: This function only supports data recovery for OFDM modulation.

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)

specifies the recovery algorithm parameters using wlanRecoveryConfig object cfgRec.

[recData,eqSym] = wlanNonHTDataRecover(___) returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanNonHTDataRecover(___) also returns the common
phase error, cpe.

20. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-183

1 functions — Alphabetical List

Examples

Recover Non-HT Data Bits

Create a non-HT configuration object having a PSDU length of 2048 bytes. Generate the
corresponding data sequence.

cfg = wlanNonHTConfig('PSDULength',2048);

txBits = randi([0 1],8*cfg.PSDULength,1);

txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 15 dB.

rxSig = awgn(txSig,15);

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.05,cfg);

[numerr,ber] = biterr(rxBits,txBits)

numerr =

 0

ber =

 0

Recover Non-HT Data Bits Using Zero-Forcing Algorithm

Create a non-HT configuration object having a 1024-byte PSDU length. Generate the
corresponding non-HT data sequence.

cfg = wlanNonHTConfig('PSDULength',1024);

txBits = randi([0 1],8*cfg.PSDULength,1);

txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.

rxSig = awgn(txSig,10);

Create a data recovery object that specifies the use of the zero-forcing algorithm.

1-184

 wlanNonHTDataRecover

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.1,cfg,cfgRec);

[numerr,ber] = biterr(rxBits,txBits)

numerr =

 0

ber =

 0

Recover Non-HT Data in Fading Channel

Configure a non-HT data object.

cfg = wlanNonHTConfig;

Generate and transmit a non-HT PSDU.

txPSDU = randi([0 1],8*cfg.PSDULength,1);

txSig = wlanNonHTData(txPSDU,cfg);

Generate an L-LTF for channel estimation.

txLLTF = wlanLLTF(cfg);

Create an 802.11g channel with a 3 Hz maximum Doppler shift and a 100 ns RMS path
delay. Disable the reset before filtering option so that the L-LTF and data fields use the
same channel realization.

ch802 = stdchan(1/20e6,3,'802.11g',100e-9);

ch802.ResetBeforeFiltering = 0;

Pass the L-LTF and data signals through an 802.11g channel with AWGN.

rxLLTF = awgn(filter(ch802,txLLTF),10);

rxSig = awgn(filter(ch802,txSig),10);

1-185

1 functions — Alphabetical List

Demodulate the L-LTF and use it to estimate the fading channel.

dLLTF = wlanLLTFDemodulate(rxLLTF,cfg);

chEst = wlanLLTFChannelEstimate(dLLTF,cfg);

Recover the non-HT data using the L-LTF channel estimate and determine the number
of bit errors in the transmitted packet.

rxPSDU = wlanNonHTDataRecover(rxSig,chEst,0.1,cfg);

[numErr,ber] = biterr(txPSDU,rxPSDU)

numErr =

 0

ber =

 0

Input Arguments

rxSig — Received non-HT data signal
vector | matrix

Received non-HT data signal, specified as a matrix of size NS-by-NR. NS is the number of
samples and NR is the number of receive antennas. NS can be greater than the length of
the data field signal.
Data Types: double
Complex Number Support: Yes

chEst — Channel estimate data
vector | 3-D array

Channel estimate data, specified as an NST-by-1-by-NR array. NST is the number of
occupied subcarriers, and NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

1-186

 wlanNonHTDataRecover

noiseVarEst — Noise variance estimate
nonnegative scalar

Estimate of the noise variance, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

cfg — Configure non-HT format parameters
wlanNonHTConfig object

Non-HT format configuration, specified as a wlanNonHTConfig object. The
wlanHTDataRecover function uses the following wlanNonHTConfig object properties:

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

Data Rate (Mbps)MCS Modulation Coding
Rate

Coded
bits per

subcarrier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

0 BPSK 1/2 1 48 24 6 3 1.5

1 BPSK 3/4 1 48 36 9 4.5 2.25

2 QPSK 1/2 2 96 48 12 6 3

3 QPSK 3/4 2 96 72 18 9 4.5

4 16QAM 1/2 4 192 96 24 12 6

5 16QAM 3/4 4 192 144 36 18 9

6 64QAM 2/3 6 288 192 48 24 12

7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

1-187

1 functions — Alphabetical List

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object properties
include:

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

1-188

 wlanNonHTDataRecover

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8×NPSDU, where
NPSDU is the length of the PSDU in bytes. See wlanNonHTConfig Properties for
PSDULength details.

Data Types: int8

eqSym — Equalized symbols
column vector | matrix

Equalized symbols, returned as an NSD-by-NSYM matrix. NSD is the number of data
subcarriers, and NSYM is the number of OFDM symbols in the non-HT data field.

Data Types: double
Complex Number Support: Yes

cpe — Common phase error
column vector

1-189

1 functions — Alphabetical List

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the “Non-HT-Data field” on page 1-190.

More About

Non-HT-Data field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and
is composed of a service field, a PSDU, tail bits, and pad bits.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros

for the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

1-190

 wlanNonHTDataRecover

See Also
wlanNonHTConfig | wlanNonHTData | wlanRecoveryConfig

Introduced in R2015b

1-191

1 functions — Alphabetical List

wlanPacketDetect
OFDM packet detection using L-STF

Syntax
startOffset = wlanPacketDetect(rxSig,cbw)

startOffset = wlanPacketDetect(rxSig,cbw,offset)

startOffset = wlanPacketDetect(rxSig,cbw,offset,threshold)

[startOffset,M] = wlanPacketDetect(___)

Description
startOffset = wlanPacketDetect(rxSig,cbw) returns the offset from the start of
the input waveform to the start of the detected preamble, given a received time-domain
waveform and the channel bandwidth. For more information, see “Packet Detection
Processing” on page 1-199.

Note: This function supports packet detection of OFDM modulated signals only.

startOffset = wlanPacketDetect(rxSig,cbw,offset) specifies an offset from
the start of the received waveform and indicates where the autocorrelation processing
begins. The returned startOffset is relative to the input offset.

startOffset = wlanPacketDetect(rxSig,cbw,offset,threshold) specifies the
threshold which the decision statistic must meet or exceed to detect a packet.

[startOffset,M] = wlanPacketDetect(___) also returns the decision statistics of
the packet detection algorithm for the received time-domain waveform, using any of the
input arguments in the previous syntaxes.

Examples
Detect 802.11n Packet

Detect a received 802.11n packet at a signal-to-noise ratio (SNR) of 20 dB.

1-192

 wlanPacketDetect

Create an HT configuration object and TGn channel object. Generate a transmit
waveform.

cfgHT = wlanHTConfig;

tgn = wlanTGnChannel('LargeScaleFadingEffect','None');

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);

Pass the waveform through the TGn channel with an SNR of 20 dB. Detect the start of
the packet.

snr = 20;

fadedSig = tgn(txWaveform);

rxWaveform = awgn(fadedSig,snr,0);

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth)

startOffset =

 0

The packet is detected at the first sample of the received waveform, specifically the
returned startOffset indicates an offset of zero samples from the start of the received
waveform.

Detect Delayed 802.11ac Packet

Detect a received 802.11ac packet that has been delayed. Specify an offset of 25 to begin
the autocorrelation process.

Create an VHT configuration object and generate the transmit waveform.

cfgVHT = wlanVHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgVHT,...

 'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Specify an offset of 25 for the beginning
of autocorrelation processing. Detect the start of the packet.

rxWaveform = [zeros(100,1);txWaveform];

1-193

1 functions — Alphabetical List

offset = 25;

startOffset = wlanPacketDetect(rxWaveform,cfgVHT.ChannelBandwidth,offset)

startOffset =

 48

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

pktOffset = offset + startOffset

pktOffset =

 73

The offset from the first sample of the received waveform to the start of the packet is
detected to be 73 samples. This coarse approximation of the packet-start offset is useful
for determining where to begin autocorrelation for the first packet and for subsequent
packets when a multipacket waveform is transmitted.

Detect Delayed 802.11a Packet

Detect a received 802.11a packet that has been delayed. No channel impairments are
added. Set the input offset to 5 and use a threshold setting very close to 1.

Create an non-HT configuration object. Generate the transmit waveform.

cfgNonHT = wlanNonHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT,...

 'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Set an initial offset of 5 and a threshold
very close to 1. Detect the delayed packet.

rxWaveform = [zeros(20,1);txWaveform];

offset = 5;

1-194

 wlanPacketDetect

threshold = 1-10*eps;

startOffset = wlanPacketDetect(rxWaveform,...

 cfgNonHT.ChannelBandwidth,offset,threshold)

startOffset =

 15

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

totalOffset = offset + startOffset

totalOffset =

 20

Using a threshold close to 1 and an undistorted received waveform increases the accuracy
of the packet detect location. The detected offset from the first sample of the received
waveform to the start of the packet is determined to be 20 samples.

Generate WLAN Packet Decision Statistics

Return the decision statistics of a WLAN waveform that consists of five 802.11a packets.

Create a non-HT configuration object and a five-packet waveform. Delay the waveform by
4000 samples.

cfgNonHT = wlanNonHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT, ...

 'NumPackets',5,'IdleTime',20e-6);

rxWaveform = [zeros(4000,1);txWaveform];

Setting the threshold input to 1, generates packet decision statistics for the entire
waveform and suppresses the startOffset output. Plot the decision statistics, M.

offset = 0;

threshold = 1;

[startOffset,M] = wlanPacketDetect(rxWaveform,cfgNonHT.ChannelBandwidth,...

1-195

1 functions — Alphabetical List

 offset,threshold);

plot(M)

Since threshold = 1, the decision statistics for the entire waveform are included in
the output M. The decision statistics show five peaks. The peaks corresponds to the first
sample of each packet detected. View startOffset.

startOffset

startOffset =

 []

1-196

 wlanPacketDetect

The returned startOffset is empty because threshold was set to 1.

Input Arguments

rxSig — Received time-domain signal
matrix

Received time-domain signal, specified as an NS-by-NR matrix. NR is the number of
receive antennas. NS represents the number of time-domain samples in the received
signal.
Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.

Data Types: char

offset — Number of samples offset
0 (default) | nonnegative integer

Number of samples offset from the beginning of the received waveform, specified as a
nonnegative integer. offset defines the starting sample for the autocorrelation process.
offset is useful for advancing through and detecting the startOffset sample for
successive packets in multipacket waveforms.

Note: Since the packet detection searches forward in time, the first packet will not be
detected if the initial setting for offset is beyond the first “L-STF” on page 1-198.

Data Types: double

threshold — Decision statistic threshold
0.5 (default) | real scalar | from >0 to 1

1-197

1 functions — Alphabetical List

Decision statistic threshold that must be met or exceeded to detect a packet, specified as
a real scalar greater than 0 and less than or equal to 1.
Data Types: double

Output Arguments

startOffset — Number of samples offset to the start of packet
nonnegative integer | []

Number of samples offset to the start of packet, returned as a nonnegative integer. This
value, shifted by offset, indicates the detected start of a packet from the first sample of
rxSig.

• An empty value, [], is returned if no packet is detected or if threshold is set to 1.
• Zero is returned if there is no delay, specifically the packet is detected at the first

sample of the waveform.

M — Decision statistics
vector

Decision statistics based on autocorrelation of the input waveform, returned as an N-
by-1 real vector. The length of N depends on the starting location of the autocorrelation
process and the number of samples until a packet is detected. When threshold is set to
1, M returns the decision statistics of the full waveform and startOffset returns empty.

For more information, see “Packet Detection Processing” on page 1-199.

More About

L-STF

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

1-198

 wlanPacketDetect

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier frequency
spacing, ΔF (kHz)

Fast Fourier
Transform (FFT) period
(TFFT = 1 / ΔF)

L-STF duration
(TSHORT = 10 × TFFT / 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses
12 of the 52 subcarriers that are available per 20 MHz channel bandwidth segment.
The number of channel bandwidths segments is one for 5 MHz, 10 MHz, and 20 MHz
bandwidths.

Algorithms

Packet Detection Processing

The packet detection algorithm is implemented as a double sliding window as described
in OFDM Wireless LANs [1], Chapter 2. The autocorrelation of “L-STF” on page 1-198
short training symbols is used to return an estimated packet-start offset. In a robust
system, the next stage will refine this estimate with symbol timing detection using the L-
LTF.

1-199

1 functions — Alphabetical List

As shown in the figure, the received signal, rn, is delayed then correlated in two sliding
windows independently. The packet detection processing output provides decision
statistics (mn) of the received waveform.

• Window C autocorrelates between the received signal and the delayed version, cn.

c r rn

l

N

K

D

n k l n k D l

R

=

= =

-

+ + +Â Â
1 0

1

, ,
*

• Window P calculates the energy received in the autocorrelation window, pn.

p rn

l

N

k

D

n k D l

R

=

= =

-

+ +ÂÂ
1 0

1
2| |,

• The decision statistics, mn, normalize the autocorrelation by pn so that the decision
statistic is not dependent on the absolute received power level.

m
c

p
n

n

n

=

()

| |2

2

The decision statistics provide visual information resulting from the autocorrelation
process that is useful when selecting the appropriate threshold value for the input
waveform. The recommended default value of 0.5 for threshold favors false1-200

 wlanPacketDetect

detections over missed detections considering a range of SNRs and various antenna
configurations.

In the sliding window calculations, D is the period of the “L-STF” on page 1-198 short
training symbols and NR is the number of receive antennas.

Packet detection processing follows this flow chart:

1-201

1 functions — Alphabetical List

LSTF_SYMBOL is the length of an “L-STF” on page 1-198 symbol.

Note: This function supports packet detection of OFDM modulated signals only.

1-202

 wlanPacketDetect

References

[1] Terry, J., and J. Heiskala. OFDM Wireless LANs: A Theoretical and Practical Guide.
Indianapolis, IN: Sams, 2002.

See Also
wlanCoarseCFOEstimate | wlanFieldIndices

Introduced in R2016b

1-203

1 functions — Alphabetical List

wlanRecoveryConfig
Create data recovery configuration object

Syntax

cfgRec = wlanRecoveryConfig

cfgRec = wlanRecoveryConfig(Name,Value)

Description

cfgRec = wlanRecoveryConfig creates a configuration object that initializes
parameters for use in recovery of signal and data information.

cfgRec = wlanRecoveryConfig(Name,Value) creates an information recovery
configuration object that overrides the default settings using one or more Name,Value
pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanRecoveryConfig Object

Create an information recovery configuration object using a Name,Value pairs to update
the equalization method and OFDM symbol sampling offset.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF', ...

 'OFDMSymbolOffset',0.5)

cfgRec =

 wlanRecoveryConfig with properties:

 OFDMSymbolOffset: 0.5000

1-204

 wlanRecoveryConfig

 EqualizationMethod: 'ZF'

 PilotPhaseTracking: 'PreEQ'

 MaximumLDPCIterationCount: 12

 EarlyTermination: 0

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'OFDMSymbolOffset',0.25,'EqualizationMethod','ZF'

'OFDMSymbolOffset' — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

1-205

1 functions — Alphabetical List

Data Types: double

'EqualizationMethod' — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

'PilotPhaseTracking' — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

'MaximumLDPCIterationCount' — Maximum number of decoding iterations in LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

'EarlyTermination' — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

1-206

 wlanRecoveryConfig

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

Output Arguments

cfgRec — Data recovery configuration
wlanRecoveryConfig object

Data recovery configuration, returned as a wlanRecoveryConfig object. The properties
of cfgRec are specified in wlanRecoveryConfig Properties.

See Also
wlanHTDataRecover | wlanHTSIGRecover | wlanLSIGRecover |
wlanNonHTDataRecover | wlanVHTDataRecover | wlanVHTSIGARecover |
wlanVHTSIGBRecover

Introduced in R2015b

1-207

1 functions — Alphabetical List

wlanS1GConfig

Create S1G format configuration object

Syntax

cfgS1G = wlanS1GConfig

cfgS1G = wlanS1GConfig(Name,Value)

Description

cfgS1G = wlanS1GConfig creates a configuration object that initializes parameters for
an IEEE 802.11 sub 1 GHz (S1G) format “PPDU” on page 1-217.

cfgS1G = wlanS1GConfig(Name,Value) creates an S1G format configuration object
that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanS1GConfig Object for Single User

Create an S1G configuration object with default settings for a single user. Override the
default by specifying a 4 MHz channel bandwidth and short preamble configuration.

cfgS1G = wlanS1GConfig;

cfgS1G.ChannelBandwidth = 'CBW4';

cfgS1G.Preamble = 'Short';

cfgS1G

cfgS1G =

 wlanS1GConfig with properties:

1-208

 wlanS1GConfig

 ChannelBandwidth: 'CBW4'

 Preamble: 'Short'

 NumUsers: 1

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

 SpatialMapping: 'Direct'

 STBC: 0

 MCS: 0

 ChannelCoding: 'BCC'

 APEPLength: 256

 GuardInterval: 'Long'

 PartialAID: 37

 UplinkIndication: 0

 Color: 0

 TravelingPilots: 0

 ResponseIndication: 'None'

 RecommendSmoothing: 1

Create wlanS1GConfig Object for Two Users

Create an S1G configuration object that assigns a 2 MHz bandwidth and two users. Use
a combination of Name,Value pairs and in-line initialization to change default settings.
In vector-valued properties, each element applies to a specific user.

cfgMU = wlanS1GConfig('ChannelBandwidth','CBW2', ...

 'Preamble','Long', ...

 'NumUsers',2, ...

 'GroupID',2, ...

 'NumTransmitAntennas', 2);

cfgMU.NumSpaceTimeStreams = [1 1];

cfgMU.MCS = [4 8];

cfgMU.APEPLength = [1024 2048];

cfgMU

cfgMU =

 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'

 Preamble: 'Long'

 NumUsers: 2

 UserPositions: [0 1]

1-209

1 functions — Alphabetical List

 NumTransmitAntennas: 2

 NumSpaceTimeStreams: [1 1]

 SpatialMapping: 'Direct'

 MCS: [4 8]

 ChannelCoding: 'BCC'

 APEPLength: [1024 2048]

 GuardInterval: 'Long'

 GroupID: 2

 TravelingPilots: 0

 ResponseIndication: 'None'

NumUsers is set to 2 and the user-dependent properties are two-element vectors.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ChannelBandwidth','CBW4','NumUsers',2 specifies a channel
bandwidth of 4 MHz and two users for the S1G format packet.

'ChannelBandwidth' — Channel bandwidth
'CBW2' (default) | 'CBW1' | 'CBW4' | 'CBW8' | 'CBW16'

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4', 'CBW8', or 'CBW16'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Example: 'CBW16' sets the channel bandwidth to 16 MHz.

Data Types: char

'Preamble' — Preamble type
'Short' (default) | 'Long'

Preamble type, specified as 'Short' or 'Long'. This property applies only when
ChannelBandwidth is not 'CBW1'.

1-210

 wlanS1GConfig

Data Types: char

'NumUsers' — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

'UserPositions' — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

'NumTransmitAntennas' — Number of transmit antennas
1 (default) | integer from 1 to 4

Number of transmit antennas, specified as a scalar integer from 1 to 4.
Data Types: double

'NumSpaceTimeStreams' — Number of space-time streams
1 (default) | integer from 1 to 4 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector. (Nsts)

• For a single user, the number of space-time streams is an integer scalar from 1 to 4.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where NUsers ≤ 4. The sum total of space-time streams for all
users, Nsts_Total, must not exceed four.

Example: [1 1 2] indicates number of space-time streams for three users, where the
first user gets 1 space-time stream, the second user gets 1 space-time stream, and the
third user gets 2 space-time streams. The total number of space-time streams assigned is
4.
Data Types: double

1-211

1 functions — Alphabetical List

'SpatialMapping' — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

'SpatialMappingMatrix' — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW1' 26 24 2

'CBW2' 56 52 4

'CBW4' 114 108 6

'CBW8' 242 234 8

'CBW16' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.

1-212

 wlanS1GConfig

Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

'Beamforming' — Enable beamforming in a long preamble packet
true (default) | false

Enable beamforming in a long preamble packet, specified as a logical. Beamforming
is performed when this setting is true. This property applies for a long preamble
(Preamble = 'Long') with NumUsers = 1 and SpatialMapping = 'Custom'. The
SpatialMappingMatrix property specifies the beamforming steering matrix.

Data Types: logical

'STBC' — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

'MCS' — Modulation and coding scheme
0 (default) | integer from 0 to 10 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 10.

1-213

1 functions — Alphabetical List

• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from
0 to 10, where NUsers ≤ 4.

MCS Modulation Coding Rate Comment

0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6
10 BPSK 1/2 Applies only for

ChannelBandwidth = 'CBW1'

Data Types: double

'APEPLength' — Number of bytes in the A-MPDU pre-EOF padding
256 (default) | integer from 0 to 65,535 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as an integer scalar or
vector.

• For a single user, APEPLength is a scalar integer from 0 to 65,535.
• For multiple users, APEPLength is a 1-by-NUsers vector of integers or a scalar with

values from 0 to 65,535, where NUsers ≤ 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field.

Note: Only aggregated data transmission is supported.

1-214

 wlanS1GConfig

Data Types: double

'GuardInterval' — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Note: For S1G, the first OFDM symbol within the data field always has a long guard
interval, even when GuardInterval is set to 'Short'.

Data Types: char

'GroupID' — Group identification number
1 (default) | integer from 1 to 62

Group identification number, specified as an integer scalar from 1 to 62. The group
identification number is signaled during a multi-user transmission. Therefore this
property applies for a long preamble (Preamble = 'Long') and when NumUsers is
greater than 1.
Data Types: double

'PartialAID' — Abbreviated indication of the PSDU recipient
37 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as an integer scalar from 0 to
511.

• For an uplink transmission, the partial identification number is the last nine bits of
the basic service set identifier (BSSID) and must be an integer from 0 to 511.

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP and must be an integer
from 0 to 63.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

1-215

1 functions — Alphabetical List

'UplinkIndication' — Enable uplink indication
false (default) | true

Enable uplink indication, specified as a logical. Set UplinkIndication to true for
uplink transmission or false for downlink transmission. This property applies when
ChannelBandwidth is not 'CBW1' and NumUsers = 1.

Data Types: logical

'Color' — Access point color identifier
0 (default) | integer scalar from 0 to 7

Access point (AP) color identifier, specified as an integer from 0 to 7. An AP includes a
Color number for the basic service set (BSS). An S1G station (STA) can use the Color
setting to determine if the transmission is within a BSS it is associated with. An S1G
STA can terminate the reception process for transmissions received from a BSS that it
is not associated with. This property applies when ChannelBandwidth is not 'CBW1',
NumUsers = 1, and UplinkIndication = false.

Data Types: double

'TravelingPilots' — Enable traveling pilots
false (default) | true

Enable traveling pilots, specified as a logical. Set TravelingPilots to true for
nonconstant pilot locations. Traveling pilots allow a receiver to track a changing channel
due to Doppler spread.
Data Types: logical

'ResponseIndication' — Response indication type
'None' (default) | 'NDP' | 'Normal' | 'Long'

Response indication type, specified as 'None', 'NDP', 'Normal', or 'Long'. This
information is used to indicate the presence and type of frame that will be sent a short
interframe space (SIFS) after the current frame transmission. The response indication
field is set based on the value of ResponseIndication and transmitted in;

• The SIG2 field of the S1G_SHORT preamble
• The SIG-A-2 field of the S1G_LONG preamble
• The SIG field of the S1G_1M preamble

Data Types: char

1-216

 wlanS1GConfig

'RecommendSmoothing' — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

Output Arguments

cfgS1G — S1G PPDU configuration
wlanS1GConfig object

S1G “PPDU” on page 1-217 configuration, returned as a wlanS1GConfig object. The
properties of cfgS1G are described in wlanS1GConfig Properties.

More About

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2016b

1-217

1 functions — Alphabetical List

wlanVHTConfig
Create VHT format configuration object

Syntax

cfgVHT = wlanVHTConfig

cfgVHT = wlanVHTConfig(Name,Value)

Description

cfgVHT = wlanVHTConfig creates a configuration object that initializes parameters for
an IEEE 802.11 very high throughput (VHT) format “PPDU” on page 1-226.

cfgVHT = wlanVHTConfig(Name,Value) creates a VHT format configuration object
that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanVHTConfig Object for Single User

Create a VHT configuration object with the default settings.

cfgVHT = wlanVHTConfig

cfgVHT =

 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'

 NumUsers: 1

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

1-218

 wlanVHTConfig

 SpatialMapping: 'Direct'

 STBC: 0

 MCS: 0

 ChannelCoding: 'BCC'

 APEPLength: 1024

 GuardInterval: 'Long'

 GroupID: 63

 PartialAID: 275

Update the channel bandwidth.

cfgVHT.ChannelBandwidth = 'CBW40'

cfgVHT =

 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW40'

 NumUsers: 1

 NumTransmitAntennas: 1

 NumSpaceTimeStreams: 1

 SpatialMapping: 'Direct'

 STBC: 0

 MCS: 0

 ChannelCoding: 'BCC'

 APEPLength: 1024

 GuardInterval: 'Long'

 GroupID: 63

 PartialAID: 275

Create wlanVHTConfig Object for Two Users

Create a VHT configuration object for a 20MHz two-user configuration and one antenna
per user.

Create a wlanVHTConfig object using a combination of Name,Value pairs and in-line
initialization to change default settings. Vector-valued properties apply user-specific
settings.

cfgMU = wlanVHTConfig('ChannelBandwidth','CBW20','NumUsers',2, ...

 'GroupID',2,'NumTransmitAntennas',2);

1-219

1 functions — Alphabetical List

cfgMU.NumSpaceTimeStreams = [1 1];

cfgMU.MCS = [4 8];

cfgMU.APEPLength = [1024 2048];

cfgMU.ChannelCoding = {'BCC' 'LDPC'}

cfgMU =

 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW20'

 NumUsers: 2

 UserPositions: [0 1]

 NumTransmitAntennas: 2

 NumSpaceTimeStreams: [1 1]

 SpatialMapping: 'Direct'

 MCS: [4 8]

 ChannelCoding: {'BCC' 'LDPC'}

 APEPLength: [1024 2048]

 GuardInterval: 'Long'

 GroupID: 2

The configuration object settings reflect the updates specified. Default values are used for
properties that were not modified.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'ChannelBandwidth','CBW160','NumUsers',2 specifies a channel
bandwidth of 160 MHz and two users for the VHT format packet.

'ChannelBandwidth' — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

1-220

 wlanVHTConfig

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

'NumUsers' — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

'UserPositions' — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

'NumTransmitAntennas' — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

'NumSpaceTimeStreams' — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

1-221

1 functions — Alphabetical List

Data Types: double

'SpatialMapping' — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

'SpatialMappingMatrix' — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.

1-222

 wlanVHTConfig

Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

'Beamforming' — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical.
Beamforming is performed when setting is true. This property applies when NumUsers
equals 1 and SpatialMapping is set to 'Custom'. The SpatialMappingMatrix
property specifies the beamforming steering matrix.
Data Types: logical

'STBC' — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

'MCS' — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.

1-223

1 functions — Alphabetical List

• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from
0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

8 256QAM 3/4

9 256QAM 5/6

Data Types: double

'ChannelCoding' — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

'APEPLength' — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.

1-224

 wlanVHTConfig

• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values
from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.

• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

'GuardInterval' — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

'GroupID' — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

'PartialAID' — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

• For an uplink transmission, the partial identification number is the last nine bits of
the basic service set identifier (BSSID).

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

1-225

1 functions — Alphabetical List

Output Arguments

cfgVHT — VHT PPDU configuration
wlanVHTConfig object

VHT “PPDU” on page 1-226 configuration, returned as a wlanVHTConfig object. The
properties of cfgVHT are described in wlanVHTConfig Properties.

More About

PPDU

The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTDataRecover |
wlanVHTLTFDemodulate | wlanWaveformGenerator

Introduced in R2015b

1-226

 wlanVHTData

wlanVHTData
Generate VHT-Data field

Syntax

y = wlanVHTData(psdu,cfg)

y = wlanVHTData(psdu,cfg,scramInit)

Description

y = wlanVHTData(psdu,cfg) generates a “VHT-Data field” on page 1-23421 time-
domain waveform from the input user data bits, psdu, for the specified configuration
object, cfg. See “VHT-Data Field Processing” on page 1-235 for waveform generation
details.

y = wlanVHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate VHT-Data Waveform

Generate the waveform for a MIMO 20 MHz VHT-Data field.

Create a VHT configuration object. Assign a 20 MHz channel bandwidth, two transmit
antennas, two space-time streams, and set MCS to four.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW20','NumTransmitAntennas',2,'NumSpaceTimeStreams',2,'MCS',4);

Generate the user payload data and the VHT-Data field waveform.

psdu = randi([0 1],cfgVHT.PSDULength*8,1);

y = wlanVHTData(psdu,cfgVHT);

21. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-227

1 functions — Alphabetical List

size(y)

ans =

 2160 2

The 20 MHz waveform is an array with two columns, corresponding to two transmit
antennas. There are 2160 complex samples in each column.

y(1:10,:)

ans =

 -0.0598 + 0.1098i -0.1904 + 0.1409i

 0.6971 - 0.3068i -0.0858 - 0.2701i

 -0.1284 + 0.9268i -0.8318 + 0.3314i

 -0.1180 + 0.0731i 0.1313 + 0.4956i

 0.3591 + 0.5485i 0.9749 + 0.2859i

 -0.9751 + 1.3334i 0.0559 + 0.4248i

 0.0881 - 0.8230i -0.1878 - 0.2959i

 -0.2952 - 0.4433i -0.1005 - 0.4035i

 -0.5562 - 0.3940i -0.1292 - 0.5976i

 1.0999 + 0.3292i -0.2036 - 0.0200i

Input Arguments

psdu — PHY service data unit
vector

PHY service data unit (“PSDU” on page 1-235), specified as an Nb-by-1 vector. Nb is the
number of bits and equals PSDULength × 8.

Data Types: double

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTData function
uses the object properties indicated.

1-228

 wlanVHTData

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

1-229

1 functions — Alphabetical List

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

1-230

 wlanVHTData

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

8 256QAM 3/4

9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

1-231

1 functions — Alphabetical List

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

PSDULength — Number of bytes carried in the user payload
integer | vector of integers

This property is read only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding. For a null data packet (NDP) the PSDU length is zero.

1-232

 wlanVHTData

• For a single user, the PSDU length is a scalar integer from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

1,048,575, where the vector length,NUsers, is an integer from 1 to 4.

PSDULength is a read-only property and is calculated internally based on the
APEPLength property and other coding-related properties, as specified in IEEE Std
802.11ac-2013, Section 22.4.3. It is accessible by direct property call. When accessing
PSDULength, the object is validated.

Example: [1035 4150] is the PSDU length vector for a wlanVHTConfig object with two
users, where the MCS for the first user is 0 and the MCS for the second user is 3.
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | integer row vector | binary vector | binary matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer, a binary vector, a 1-by-NU integer row vector, or a 7-by-NU binary matrix. NU is
the number of users, from 1 to 4. If specified as an integer or binary vector, the setting
applies to all users. If specified as a row vector or binary matrix, the setting for each
user is specified in the corresponding column, as a scalar integer from 1 to 127 or the
corresponding binary vector.
Example: [1;0;1;1;1;0;1] conveys the scrambler initialization state of 93 as a binary
vector.
Data Types: double | int8

Output Arguments

y — VHT-Data field time-domain waveform
matrix

“VHT-Data field” on page 1-234 time-domain waveform, returned as an NS-by-NT
matrix. NS is the number of time-domain samples and NT is the number of transmit
antennas. See “VHT-Data Field Processing” on page 1-235 for waveform generation
details.

1-233

1 functions — Alphabetical List

More About

VHT-Data field

The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

1-234

 wlanVHTData

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

PSDU

Physical layer (PHY) Service Data Unit (PSDU). A PSDU can consist of one medium
access control (MAC) protocol data unit (MPDU) or several MPDUs in an aggregate
MPDU (A-MPDU). In a single user scenario, the VHT-Data field contains one PSDU. In a
multi-user scenario, the VHT-Data field carries up to four PSDUs for up to four users.

Algorithms

VHT-Data Field Processing

The “VHT-Data field” on page 1-234 encodes the service, “PSDU” on page 1-235,
pad bits, and tail bits. The wlanVHTData function performs transmitter processing on
the “VHT-Data field” on page 1-234 and outputs the time-domain waveform for NT
transmit antennas.

1-235

1 functions — Alphabetical List

NES is the number of BCC encoders.
NSS is the number of spatial streams.

1-236

 wlanVHTData

NSTS is the number of space-time streams.
NT is the number of transmit antennas.

BCC channel coding is shown.

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.9 and
22.3.4.10, respectively, single user and multi-user.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanHTConfig | wlanVHTDataRecover | wlanWaveformGenerator

Introduced in R2015b

1-237

1 functions — Alphabetical List

wlanVHTDataRecover
Recover VHT data

Syntax
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg)

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber)

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber,

numSTS)

recBits = wlanVHTDataRecover(___ ,cfgRec)

[recBits,crcBits] = wlanVHTDataRecover(___)

[recBits,crcBits,eqSym] = wlanVHTDataRecover(___)

[recBits,crcBits,eqSym,cpe] = wlanVHTDataRecover(___)

Description
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns the
recovered payload bits from the “VHT data field” on page 1-25122 for a single-user
transmission. Inputs include the received “VHT data field” on page 1-251 signal, the
channel estimate, the noise variance estimate, and the format configuration object, cfg.

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber)

returns the recovered payload bits, in a multiuser transmission, for the user specified by
userNumber.

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber,

numSTS) also specifies the number of space-time streams, numSTS, for a multiuser
transmission.

recBits = wlanVHTDataRecover(___ ,cfgRec) returns the recovered bits using the
algorithm parameters specified in cfgRec.

[recBits,crcBits] = wlanVHTDataRecover(___) also returns the VHT-SIG-B
checksum bits, crcBits, using the arguments from the previous syntaxes.

22. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-238

 wlanVHTDataRecover

[recBits,crcBits,eqSym] = wlanVHTDataRecover(___) also returns the
equalized symbols, eqSym.

[recBits,crcBits,eqSym,cpe] = wlanVHTDataRecover(___) also returns the
common phase error, cpe.

Examples

Recover VHT-Data Field Over 2x2 Fading Channel

Recover bits in the VHT-Data field using channel estimation on a VHT-LTF field over a 2
x 2 quasi-static fading channel.

Create a VHT configuration object with 160 MHz channel bandwidth and two
transmission paths.

cbw = 'CBW160';

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumTransmitAntennas',2,'NumSpaceTimeStreams',2,'APEPLength',512);

Generate VHT-LTF and VHT-Data field signals.

txDataBits = randi([0 1],8*vht.PSDULength,1);

txVHTLTF = wlanVHTLTF(vht);

txVHTData = wlanVHTData(txDataBits,vht);

Pass the transmitted waveform through a 2 x 2 quasi-static fading channel with AWGN.

snr = 10;

H = 1/sqrt(2)*complex(randn(2,2),randn(2,2));

rxVHTLTF = awgn(txVHTLTF*H,snr);

rxVHTData = awgn(txVHTData*H,snr);

Calculate the received signal power and use it to estimate the noise variance.

powerDB = 10*log10(var(rxVHTData));

noiseVarEst = mean(10.^(0.1*(powerDB-snr)));

Perform channel estimation based on the VHT-LTF field.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht,1);

chanEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

1-239

1 functions — Alphabetical List

Recover payload bits in the VHT-Data field and compare against the original payload
bits.

rxDataBits = wlanVHTDataRecover(rxVHTData,chanEst,noiseVarEst,vht);

numErr = biterr(txDataBits,rxDataBits)

numErr =

 0

Recover VHT-Data Field Signal

Recover a VHT-Data field signal through a SISO AWGN channel using ZF equalization.

Configure VHT format object, generate random payload bits, and generate the VHT-Data
field.

cfgVHT = wlanVHTConfig('APEPLength',512);

txBits = randi([0 1], 8*cfgVHT.PSDULength,1);

txVHTData = wlanVHTData(txBits,cfgVHT);

Pass the transmitted VHT data through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',0.1);

rxVHTData = awgnChan(txVHTData);

Configure the recovery object and recover the payload bits using a perfect channel
estimate of all ones. Compare the recovered bits against the transmitted bits.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

recBits = wlanVHTDataRecover(rxVHTData,ones(242,1),0.1,cfgVHT,cfgRec);

numErrs = biterr(txBits,recBits)

numErrs =

 0

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

1-240

 wlanVHTDataRecover

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';

numSTS = [1 3];

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...

 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen =

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);

txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);

txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;

H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));

H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');

rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');

1-241

1 functions — Alphabetical List

rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));

noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

powerDB2 = 10*log10(var(rxVHTData2));

noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);

chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);

chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);

[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 =

 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);

[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 =

 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because

1-242

 wlanVHTDataRecover

it receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments

rxSig — Received VHT-Data field signal
matrix

Received VHT-Data field signal in the time domain, specified as an NS-by-NR matrix. NR
is the number of receive antennas. NS must be greater than or equal to the number of
time-domain samples in the VHT-Data field input.

Note: wlanVHTDataRecover processes one PPDU data field per entry. If NS is greater
than the field length, extra samples at the end of rxSig are not processed. To process a
concatenated stream of PPDU data fields, multiple calls to wlanVHTDataRecover are
required. If rxSig is shorter than the length of the VHT-Data field, an error occurs.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimation
matrix | 3-D array

Channel estimation for data and pilot subcarriers, specified as a matrix or array of size
NST-by-NSTS-by-NR. NST is the number of occupied subcarriers. NSTS is the number of
space-time streams. For multiuser transmissions, NSTS is the total number of space-time
streams for all users. NR is the number of receive antennas. NST and NSTS must match
the cfg configuration object settings for channel bandwidth and number of space-time
streams.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

1-243

1 functions — Alphabetical List

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cfg — VHT PPDU configuration
wlanVHTConfig object

VHT PPDU configuration, specified as a wlanVHTConfig object. The
wlanVHTDataRecover function uses the following wlanVHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

1-244

 wlanVHTDataRecover

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

1-245

1 functions — Alphabetical List

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

8 256QAM 3/4

9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

1-246

 wlanVHTDataRecover

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters containing properties used during data recovery, specified as
a wlanRecoveryConfig object. The configurable properties include OFDM symbol
sampling offset, equalization method, and the type of pilot phase tracking. If you
do not specify a cfgRec object, the default object property values as described in
wlanRecoveryConfig Properties are used in the data recovery.

Note: Use cfgRec.EqualizationMethod = 'ZF' when either of the following conditions
are met:

• cfg.NumSpaceTimeStreams=1

• cfg.NumSpaceTimeStreams=2 and cfg.STBC=true

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

1-247

1 functions — Alphabetical List

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

MaximumLDPCIterationCount — Maximum number of decoding iterations in LDPC
12 (default) | positive scalar integer

1-248

 wlanVHTDataRecover

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

userNumber — Number of the user
integer from 1 to NUsers

Number of the user in a multiuser transmission, specified as an integer having a value
from 1 to NUsers. NUsers is the total number of users.

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in a multiuser transmission, specified as a vector. The
number of space-time streams is a 1-by-NUsers vector of integers from 1 to 4, where NUsers
is an integer from 1 to 4.
Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

1-249

1 functions — Alphabetical List

Output Arguments

recBits — Recovered payload bits in the VHT-Data field
1 | 0 | column vector

Recovered payload bits in the VHT-Data field, returned as a column vector of length
8 × cfgVHT.PSDULength. See wlanVHTConfig Properties for PSDULength details. The
output is for a single user as determined by userNumber.

Data Types: int8

crcBits — Checksum bits for VHT-SIG-B field
binary column vector

Checksum bits for VHT-SIG-B field, returned as a binary column vector of length 8.
Data Types: int8

eqSym — Equalized symbols
matrix | 3-D array

Equalized symbols, returned as an NSD-by-NSYM-by-NSS matrix or array. NSD is the
number of data subcarriers. NSYM is the number of OFDM symbols in the VHT-Data
field. NSS is the number of spatial streams assigned to the user. When STBC is false,
NSS = NSTS. When STBC is true, NSS = NSTS/2.

Data Types: double
Complex Number Support: Yes

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the “VHT data field” on page 1-251.

Limitations

wlanVHTDataRecover processing limitations, restrictions, and recommendations:

• If only VHT format PPDUs are processed, then isa(cfgVHT, 'wlanVHTConfig')
must be true.

1-250

 wlanVHTDataRecover

• For single-user scenarios, cfgVHT.NumUsers must equal 1.
• When STBC is enabled, the number of space-time streams must be even.
• cfgRec.EqualizationMethod = 'ZF' is recommended when cfgVHT.STBC =

true and cfgVHT.NumSpaceTimeStreams = 2
• cfgRec.EqualizationMethod = 'ZF' is recommended when

cfgVHT.NumSpaceTimeStreams = 1

More About

VHT data field

The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

1-251

1 functions — Alphabetical List

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

1-252

 wlanVHTDataRecover

See Also
wlanRecoveryConfig | wlanVHTConfig | wlanVHTData |
wlanVHTLTFChannelEstimate | wlanVHTLTFDemodulate

Introduced in R2015b

1-253

1 functions — Alphabetical List

wlanVHTLTF

Generate VHT-LTF waveform

Syntax

y = wlanVHTLTF(cfg)

Description

y = wlanVHTLTF(cfg) generates a “VHT-LTF” on page 1-257 23 time-domain
waveform for the specified configuration object. See “VHT-LTF Processing” on page
1-258 for waveform generation details.

Examples

Generate VHT-LTF Waveform

Create a VHT configuration object with an 80 MHz channel bandwidth.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW80';

Generate a VHT-LTF waveform.

vltfOut = wlanVHTLTF(cfgVHT);

size(vltfOut)

ans =

 320 1

23. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-254

 wlanVHTLTF

The 80 MHz waveform is a single OFDM symbol with 320 complex output samples.

Input Arguments

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTLTF function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

1-255

1 functions — Alphabetical List

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.

1-256

 wlanVHTLTF

Data Types: double
Complex Number Support: Yes

Output Arguments

y — VHT-LTF time-domain waveform
matrix

“VHT-LTF” on page 1-257 time-domain waveform, returned as an (NS × NVHTLTF)-
by-NT matrix. NS is the number of time-domain samples per NVHTLTF, where NVHTLTF is
the number of OFDM symbols in the VHT-LTF. NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS

'CBW20' 80

'CBW40' 160

'CBW80' 320

'CBW160' 640

See “VHT-LTF Processing” on page 1-258 for waveform generation details.
Data Types: double
Complex Number Support: Yes

More About

VHT-LTF

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

1-257

1 functions — Alphabetical List

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

Algorithms

VHT-LTF Processing

The “VHT-LTF” on page 1-257 is used for MIMO channel estimation and pilot
subcarrier tracking. The number of OFDM symbols in the “VHT-LTF” on page 1-257
(NVHTLTF) is derived from the total number of space-time streams (NSTS_Total). NSTS_Total =
ΣNSTS(u) for user u, u = 0,…, NUsers–1 and NSTS(u) is the number of space-time streams
per user.

NSTS_Total NVHTLTF

1 1
2 2
3 4
4 4
5 6
6 6
7 8
8 8

For algorithm details refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.7.

1-258

 wlanVHTLTF

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanLLTF | wlanVHTConfig | wlanVHTData | wlanVHTLTFChannelEstimate |
wlanVHTLTFDemodulate | wlanVHTSTF

Introduced in R2015b

1-259

1 functions — Alphabetical List

wlanVHTLTFDemodulate

Demodulate VHT-LTF waveform

Syntax

y = wlanVHTLTFDemodulate(x,cfg)

y = wlanVHTLTFDemodulate(x,cbw,numSTS)

y = wlanVHTLTFDemodulate(___ ,OFDMSymbolOffset)

Description

y = wlanVHTLTFDemodulate(x,cfg) returns demodulated “VHT-LTF” on page
1-26824 waveform y given time-domain input signal x and wlanVHTConfig object cfg.

y = wlanVHTLTFDemodulate(x,cbw,numSTS) demodulates the received signal for the
specified channel bandwidth, cbw, and number of space-time streams, numSTS.

y = wlanVHTLTFDemodulate(___ ,OFDMSymbolOffset) specifies the OFDM symbol
offset as a fraction of the cyclic prefix length.

Examples

Demodulate Received VHT-LTF Signal

Create a VHT format configuration object.

vht = wlanVHTConfig;

Generate a VHT-LTF signal.

txVHTLTF = wlanVHTLTF(vht);

24. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-260

 wlanVHTLTFDemodulate

Add white noise to the signal.

rxVHTLTF = awgn(txVHTLTF,1);

Demodulate the received signal.

y = wlanVHTLTFDemodulate(rxVHTLTF,vht);

Demodulate VHT-LTF and Estimate Channel Coefficients

Specify a VHT format configuration object and generate a VHT-LTF.

vht = wlanVHTConfig;

txltf = wlanVHTLTF(vht);

Multiply the transmitted VHT-LTF by 0.1 + 0.1i . Pass the signal through an AWGN
channel.

rxltfNoNoise = txltf * complex(0.1,0.1);

rxltf = awgn(rxltfNoNoise,20,'measured');

Demodulated the received VHT-LTF with a symbol offset of 0.5.

dltf = wlanVHTLTFDemodulate(rxltf,vht,0.5);

Estimate the channel using the demodulated VHT-LTF. Plot the result.

chEst = wlanVHTLTFChannelEstimate(dltf,vht);

scatterplot(chEst)

1-261

1 functions — Alphabetical List

The estimate is very close to the previously introduced 0.1+0.1i multiplier.

Extract VHT-LTF and Recover VHT Data

Generate a VHT waveform. Extract and demodulate the VHT-LTF to estimate the
channel coefficients. Recover the data field using the channel estimate and use this to
determine the number of bit errors.

Configure a VHT format object with two paths.

vht = wlanVHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a random PSDU and create the corresponding VHT waveform.

1-262

 wlanVHTLTFDemodulate

txPSDU = randi([0 1],8*vht.PSDULength,1);

txSig = wlanWaveformGenerator(txPSDU,vht);

Pass the signal through a TGac 2x2 MIMO channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2,'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

rxSigNoNoise = tgacChan(txSig);

Add AWGN to the received signal. Set the noise variance for the case in which the
receiver has a 9 dB noise figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(80e6)+9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxSig = awgnChan(rxSigNoNoise);

Determine the indices for the VHT-LTF and extract the field from the received signal.

indVHT = wlanFieldIndices(vht,'VHT-LTF');

rxLTF = rxSig(indVHT(1):indVHT(2),:);

Demodulate the VHT-LTF and estimate the channel coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,vht);

chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the data field and recover the information bits.

indData = wlanFieldIndices(vht,'VHT-Data');

rxData = rxSig(indData(1):indData(2),:);

rxPSDU = wlanVHTDataRecover(rxData,chEst,nVar,vht);

Determine the number of bit errors.

numErrs = biterr(txPSDU,rxPSDU)

numErrs =

 0

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

1-263

1 functions — Alphabetical List

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';

numSTS = [1 3];

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...

 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen =

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);

txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);

txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;

H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));

H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');

rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');

1-264

 wlanVHTLTFDemodulate

rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));

noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

powerDB2 = 10*log10(var(rxVHTData2));

noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);

chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);

chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);

[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 =

 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);

[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 =

 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because

1-265

1 functions — Alphabetical List

it receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments

x — Time-domain input signal
matrix

Time-domain input signal corresponding to the VHT-LTF of the PPDU, specified as
a matrix of size NS-by-NR. NS is the number of samples. NR is the number of receive
antennas. NS can be greater than or equal to the VHT-LTF length as indicated by cfg.
Trailing samples at the end of x are not used.

Data Types: double
Complex Number Support: Yes

cfg — VHT format configuration
wlanVHTConfig object

VHT format configuration, specified as a wlanVHTConfig object. The function uses the
following wlanVHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

1-266

 wlanVHTLTFDemodulate

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Data Types: char

numSTS — Number of space-time streams
integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] indicates that one space-time stream is assigned to user 1, three
space-time streams are assigned to user 2, and two space-time streams are assigned to
user 3.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

1-267

1 functions — Alphabetical List

Data Types: double

Output Arguments

y — Demodulated VHT-LTF waveform
matrix | 3-D array

Demodulated VHT-LTF waveform, returned as an NST-by-NSYM-by-NR array. NST is the
number of data and pilot subcarriers, NSYM is the number of OFDM symbols in the VHT-
LTF, and NR is the number of receive antennas.

If the received VHT-LTF signal, x, is empty, then the output is also empty.

Data Types: double
Complex Number Support: Yes

More About

VHT-LTF

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

1-268

 wlanVHTLTFDemodulate

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanVHTConfig | wlanVHTLTF | wlanVHTLTFChannelEstimate

Introduced in R2015b

1-269

1 functions — Alphabetical List

wlanVHTSIGA
Generate VHT-SIG-A waveform

Syntax

y= wlanVHTSIGA(cfg)

[y,bits] = wlanVHTSIGA(cfg)

Description

y= wlanVHTSIGA(cfg) generates a “VHT-SIG-A” on page 1-27625 time-domain
waveform for the specified configuration object. See “VHT-SIG-A Processing” on page
1-278 for waveform generation details.

[y,bits] = wlanVHTSIGA(cfg) also outputs “VHT-SIG-A” on page 1-276
information bits.

Examples

Generate VHT-SIG-A Waveform

Generate the VHT-SIG-A waveform for an 80 MHz transmission packet.

Create a VHT configuration object, assign an 80 MHz channel bandwidth, and generate
the waveform.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW80';

y = wlanVHTSIGA(cfgVHT);

size(y)

ans =

25. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-270

 wlanVHTSIGA

 640 1

The 80 MHz waveform has two OFDM symbols and is a total of 640 samples long. Each
symbol contains 320 samples.

Extract VHT-SIG-A Bandwidth Information

Generate the VHT-SIG-A waveform for a 40 MHz transmission packet.

Create a VHT configuration object, and assign a 40 MHz channel bandwidth.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW40';

Generate the VHT-SIG-A waveform and information bits.

[y,bits] = wlanVHTSIGA(cfgVHT);

Extract the bandwidth from the returned bits and analyze. The bandwidth information is
contained in the first two bits.

bwBits = bits(1:2);

bi2de(bwBits)

ans =

 2×1 int8 column vector

 1

 0

As defined in IEEE Std 802.11ac-2013, Table 22-12, a value of '1' corresponds to 40
MHz bandwidth.

Input Arguments

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSIGA function
uses the object properties indicated.

1-271

1 functions — Alphabetical List

User Scenario Applicable Object Properties

Multi-user ChannelBandwidth, NumUsers,
UserPositions, NumTransmitAntennas,
NumSpaceTimeStreams,
SpatialMapping, STBC, ChannelCoding,
GuardInterval, and GroupID

Single user ChannelBandwidth, NumUsers,
NumTransmitAntennas,
NumSpaceTimeStreams,
SpatialMapping, STBC, MCS,
ChannelCoding, GuardInterval,
GroupID, Beamforming, and PartialAID

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

1-272

 wlanVHTSIGA

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical.
Beamforming is performed when setting is true. This property applies when NumUsers
equals 1 and SpatialMapping is set to 'Custom'. The SpatialMappingMatrix
property specifies the beamforming steering matrix.
Data Types: logical

STBC — Enable space-time block coding
false (default) | true

1-273

1 functions — Alphabetical List

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

8 256QAM 3/4

9 256QAM 5/6

1-274

 wlanVHTSIGA

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

GroupID — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

• For an uplink transmission, the partial identification number is the last nine bits of
the basic service set identifier (BSSID).

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

1-275

1 functions — Alphabetical List

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

Output Arguments
y — VHT-SIG-A time-domain waveform
matrix

“VHT-SIG-A” on page 1-276 time-domain waveform, returned as an NS-by-NT matrix.
NS is the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW20' 160

'CBW40' 320

'CBW80' 640

'CBW160' 1280

See “VHT-SIG-A Processing” on page 1-278 for waveform generation details.
Data Types: double
Complex Number Support: Yes

bits — Signaling bits used for the VHT-SIG-A field
48-bit column vector

Signaling bits used for the “VHT-SIG-A” on page 1-276, returned as a 48-bit column
vector.
Data Types: int8

More About
VHT-SIG-A

The very high throughput signal A (VHT-SIG-A) field contains information required to
interpret VHT format packets. Similar to the non-HT signal (L-SIG) field for the non-

1-276

 wlanVHTSIGA

HT OFDM format, this field stores the actual rate value, channel coding, guard interval,
MIMO scheme, and other configuration details for the VHT format packet. Unlike the
HT-SIG field, this field does not store the packet length information. Packet length
information is derived from L-SIG and is captured in the VHT-SIG-B field for the VHT
format.

The VHT-SIG-A field consists of two symbols: VHT-SIG-A1 and VHT-SIG-A2. These
symbols are located between the L-SIG and the VHT-STF portion of the VHT format
PPDU.

The VHT-SIG-A field is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.3.

1-277

1 functions — Alphabetical List

The VHT-SIG-A field includes these components. The bit field structures for VHT-SIG-A1
and VHT-SIG-A2 vary for single user or multi-user transmissions.

• BW — A two-bit field that indicates 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, or 3
for 160 MHz.

• STBC — A bit that indicates the presence of space-time block coding.
• Group ID — A six-bit field that indicates the group and user position assigned to a

STA.
• NSTS — A three-bit field for a single user or 4 three-bit fields for a multi-user scenario,

that indicates the number of space-time streams per user.
• Partial AID — An identifier that combines the association ID and the BSSID.
• TXOP_PS_NOT_ALLOWED — An indicator bit that shows if client devices are

allowed to enter dose state. This bit is set to false when the VHT-SIG-A structure is
populated, indicating that the client device is allowed to enter dose state.

• Short GI — A bit that indicates use of the 400 ns guard interval.
• Short GI NSYM Disambiguation — A bit that indicates if an extra symbol is

required when the short GI is used.
• SU/MU[0] Coding — A bit field that indicates if convolutional or LDPC coding is

used for a single user or for user MU[0] in a multi-user scenario.
• LDPC Extra OFDM Symbol — A bit that indicates if an extra OFDM symbol is

required to transmit the data field.
• MCS — A four-bit field.

• For a single user scenario, it indicates the modulation and coding scheme used.
• For a multi-user scenario, it indicates use of convolutional or LDPC coding and the

MCS setting is conveyed in the VHT-SIG-B field.
• Beamformed — An indicator bit set to 1 when a beamforming matrix is applied to

the transmission.
• CRC — An eight-bit field used to detect errors in the VHT-SIG-A transmission.
• Tail — A six-bit field used to terminate the convolutional code.

Algorithms

VHT-SIG-A Processing

The “VHT-SIG-A” on page 1-276 field includes information required to process VHT
format packets.

1-278

 wlanVHTSIGA

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.5. The
wlanVHTSIGA function performs transmitter processing on the “VHT-SIG-A” on page
1-276 field and outputs the time-domain waveform.

1-279

1 functions — Alphabetical List

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanLSIG | wlanVHTConfig | wlanVHTSIGARecover | wlanVHTSTF

Introduced in R2015b

1-280

 wlanVHTSIGARecover

wlanVHTSIGARecover

Recover VHT-SIG-A information bits

Syntax

recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw)

recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)

[recBits,failCRC] = wlanVHTSIGARecover(___)

[recBits,failCRC,eqSym] = wlanVHTSIGARecover(___)

[recBits,failCRC,eqSym,cpe] = wlanVHTSIGARecover(___)

Description

recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw) returns
the recovered information bits from the “VHT-SIG-A” on page 1-28926 field. Inputs
include the received “VHT-SIG-A” on page 1-289 field, the channel estimate, the noise
variance estimate, and the channel bandwidth.

recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)

specifies algorithm information using wlanRecoveryConfig object cfgRec.

[recBits,failCRC] = wlanVHTSIGARecover(___) returns the failure status of the
CRC check, failCRC, using the arguments from previous syntaxes.

[recBits,failCRC,eqSym] = wlanVHTSIGARecover(___) returns the equalized
symbols, eqSym.

[recBits,failCRC,eqSym,cpe] = wlanVHTSIGARecover(___) returns the
common phase error, cpe.

26. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-281

1 functions — Alphabetical List

Examples

Recover VHT-SIG-A Information Bits

Recover the information bits in the VHT-SIG-A field by performing channel estimation
on the L-LTF over a 1x2 quasi-static fading channel

Create a wlanVHTConfig object having a channel bandwidth of 80 MHz. Generate L-
LTF and VHT-SIG-A field signals using this object.

cfg = wlanVHTConfig('ChannelBandwidth','CBW80');

txLLTF = wlanLLTF(cfg);

[txVHTSIGA, txBits] = wlanVHTSIGA(cfg);

chanBW = cfg.ChannelBandwidth;

noiseVarEst = 0.1;

Pass the L-LTF and VHT-SIG-A signals through a 1x2 quasi-static fading channel with
AWGN.

H = 1/sqrt(2)*complex(randn(1,2),randn(1,2));

rxLLTF = awgn(txLLTF*H,10);

rxVHTSIGA = awgn(txVHTSIGA*H,10);

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);

chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the VHT-SIG-A. Verify that the CRC check was successful.

[rxBits,failCRC] = wlanVHTSIGARecover(rxVHTSIGA,chanEst,noiseVarEst,'CBW80');

failCRC

failCRC =

 logical

 0

The CRC failure check returns a 0, indicating that the CRC passed.

Compare the transmitted bits to the received bits. Confirm that the reported CRC result
is correct because the output matches the input.

1-282

 wlanVHTSIGARecover

isequal(txBits,rxBits)

ans =

 logical

 1

Recover VHT-SIG-A Using Zero-Forcing Equalizer

Recover the VHT-SIG-A in an AWGN channel. Configure the VHT signal to have a 160
MHz channel bandwidth, one space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 160 MHz. Using the
object to create a VHT-SIG-A waveform.

cfg = wlanVHTConfig('ChannelBandwidth','CBW160');

Generate L-LTF and VHT-SIG-A field signals.

txLLTF = wlanLLTF(cfg);

[txSig,txBits] = wlanVHTSIGA(cfg);

chanBW = cfg.ChannelBandwidth;

noiseVar = 0.1;

Pass the transmitted VHT-SIG-A through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);

rxLLTF = awgnChan(txLLTF);

rxSig = awgnChan(txSig);

Using wlanRecoveryConfig, set the equalization method to zero-forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);

chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the VHT-SIG-A. Verify that there are no bit errors in the received information.

[rxBits,crcFail] = wlanVHTSIGARecover(rxSig,chanEst,noiseVar,'CBW160',cfgRec);

crcFail

1-283

1 functions — Alphabetical List

crcFail =

 logical

 0

The CRC failure check returns a 0, indicating the CRC passed. Comparing the
transmitted bits to the received bits reconfirms the reported CRC result because the
output matches the input.

biterr(txBits,rxBits)

ans =

 0

Recover VHT-SIG-A in 2x2 MIMO Channel

Recover VHT-SIG-A in a 2x2 MIMO channel with AWGN. Confirm that the CRC check
passes.

Configure a 2x2 MIMO VHT channel.

chanBW = 'CBW20';

cfgVHT = wlanVHTConfig('ChannelBandwidth', chanBW, 'NumTransmitAntennas', 2, 'NumSpaceTimeStreams', 2);

Generate L-LTF and VHT-SIG-A waveforms.

txLLTF = wlanLLTF(cfgVHT);

txVHTSIGA = wlanVHTSIGA(cfgVHT);

Pass the L-LTF and VHT-SIG-A waveforms through a 2×2 MIMO channel with white
noise.

mimoChan = comm.MIMOChannel('SampleRate', 20e6);

rxLLTF = awgn(mimoChan(txLLTF), 15);

rxVHTSIGA = awgn(mimoChan(txVHTSIGA),15);

Demodulate the L-LTF signal. To generate a channel estimate, use the demodulated L-
LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF, chanBW, 1);

chanEst = wlanLLTFChannelEstimate(demodLLTF, chanBW);

1-284

 wlanVHTSIGARecover

Recover the information bits in VHT-SIG-A.

[recVHTSIGABits, failCRC, eqSym] = wlanVHTSIGARecover(rxVHTSIGA, chanEst, 0, chanBW);

Visualize the scatter plot of the equalized symbols, eqSym.

scatterplot(eqSym(:))

Input Arguments

rxSig — Received VHT-SIG-A
matrix

1-285

1 functions — Alphabetical List

Received VHT-SIG-A field, specified as an NS-by-NR matrix. NS is the number of samples
and increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160' 1280

NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimate
3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers and increases with channel bandwidth.

Channel Bandwidth NST

'CBW20' 52
'CBW40' 104
'CBW80' 208
'CBW160' 416

NR is the number of receive antennas.

The channel estimate is based on the “L-LTF” on page 1-290.
Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

1-286

 wlanVHTSIGARecover

Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'.

Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

1-287

1 functions — Alphabetical List

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

recBits — Recovered VHT-SIG-A information bits
column vector

Recovered VHT-SIG-A information bits, returned as a 48-by-1 column vector. See “VHT-
SIG-A” on page 1-289 for more information.

failCRC — CRC failure check
true | false

CRC failure check, returned as true if the CRC check fails or false if the CRC check
passes.

eqSym — Equalized symbols
matrix

Equalized symbols at the data carrying subcarriers, returned as 48-by-2 matrix. Each
20 MHz channel bandwidth segment has two symbols and 48 data carrying subcarriers.

1-288

 wlanVHTSIGARecover

These segments are combined into a single 48-by-2 matrix that comprises the “VHT-SIG-
A” on page 1-289 field.

cpe — Common phase error
column vector

Common phase error in radians, returned as a 2-by-1 column vector.

More About

VHT-SIG-A

The very high throughput signal A (VHT-SIG-A) field consists of two symbols: VHT-SIG-
A1 and VHT-SIG-A2. The VHT-SIG-A field carries information required to interpret VHT
PPDU information.

1-289

1 functions — Alphabetical List

For VHT-SIG-A field bit details, refer to IEEE Std 802.11ac-2013 [1], Table 22-12.

L-LTF

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP
legacy preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, frequency offset estimation, and time synchronization rely on the L-
LTF. The long OFDM training symbol consists of 52 subcarriers.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The cyclic prefix (CP) consists of the second half of the long training
symbol.

1-290

 wlanVHTSIGARecover

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth (MHz)

Subcarrier
frequency
spacing, ΔF (kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training Symbol
Guard Interval
(GI2) Duration
(TGI2 = TFFT / 2)

L-LTF duration
(TLONG = TGI2 + 2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

PPDU

PLCP protocol data unit

The PPDU is the complete PLCP frame, including PLCP headers, MAC headers, the
MAC data field, and the MAC and PLCP trailers.

Algorithms

VHT-SIG-A Recovery

The “VHT-SIG-A” on page 1-289 field consists of two symbols and resides between the
L-SIG field and the VHT-STF portion of the packet structure for the VHT format “PPDU”
on page 1-291.

For single-user packets, you can recover the length information from the L-SIG and VHT-
SIG-A field information. Therefore, it is not strictly required for the receiver to decode
the “VHT-SIG-A” on page 1-289 field.

1-291

1 functions — Alphabetical List

For “VHT-SIG-A” on page 1-289 details, refer to IEEE Std 802.11ac-2013 [1], Section
22.3.4.5, and Perahia [2], Section 7.3.2.1.

1-292

 wlanVHTSIGARecover

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate |
wlanRecoveryConfig | wlanVHTSIGA

Introduced in R2015b

1-293

1 functions — Alphabetical List

wlanVHTSIGB
Generate VHT-SIG-B waveform

Syntax

y= wlanVHTSIGB(cfg)

[y,bits] = wlanVHTSIGB(cfg)

Description

y= wlanVHTSIGB(cfg) generates a “VHT-SIG-B” on page 1-29927 time-domain
waveform for the specified configuration object. See “VHT-SIG-B Processing” on page
1-301 for waveform generation details.

[y,bits] = wlanVHTSIGB(cfg) also outputs “VHT-SIG-B” on page 1-299
information bits.

Examples

Generate VHT-SIG-B Waveform

Generate the VHT-SIG-B waveform for an 80 MHz transmission packet.

Create a VHT configuration object, assign an 80 MHz channel bandwidth, and generate
the waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW80');

vhtsigb = wlanVHTSIGB(cfgVHT);

size(vhtsigb)

ans =

 320 1

27. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-294

 wlanVHTSIGB

The 80 MHz waveform has one OFDM symbol and is a total of 320 samples long.

Input Arguments

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSIGB function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

1-295

1 functions — Alphabetical List

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

1-296

 wlanVHTSIGB

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

8 256QAM 3/4

9 256QAM 5/6

1-297

1 functions — Alphabetical List

Data Types: double

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

Output Arguments

y — VHT-SIG-B time-domain waveform
matrix

“VHT-SIG-B” on page 1-299 time-domain waveform, returned as an NS-by-NT matrix.
NS is the number of time-domain samples and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS

'CBW20' 80

'CBW40' 160

'CBW80' 320

'CBW160' 640

See “VHT-SIG-B Processing” on page 1-301. for waveform generation details.
Data Types: double

1-298

 wlanVHTSIGB

Complex Number Support: Yes

bits — Signaling bits used for the VHT-SIG-B field
Nbits column vector

Signaling bits used for “VHT-SIG-B” on page 1-299 field, returned as an Nbits column
vector. Nbits is the number of bits.

The number of output bits changes with the channel bandwidth.

ChannelBandwidth Nb

'CBW20' 26

'CBW40' 27

'CBW80' 29

'CBW160' 29

See “VHT-SIG-B Processing” on page 1-301. for waveform generation details.
Data Types: int8

More About

VHT-SIG-B

The very high throughput signal B field (VHT-SIG-B) is used for multi-user scenario to
set up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and
is transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF
and the data portion of the VHT format PPDU.

1-299

1 functions — Alphabetical List

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-
MPDU length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013,
Section 22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies
with the channel bandwidth and the assignment depends on whether single user or
multi-user scenario in allocated. For single user configurations, the same information is
available in the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Description

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-
SIG-B

B0-15 (16) B0-16
(17)

B0-18 (19) B0-16
(17)

B0-18 (19) B0-20
(21)

A
variable-
length
field that
indicates
the size of
the data
payload in
four-byte
units. The
length of
the field
depends
on the
channel
bandwidth.

VHT-
MCS

B16-19 (4) B17-20
(4)

B19-22 (4) N/A N/A N/A A four-
bit field
that is
included
for multi-
user
scenarios
only.

ReservedN/A N/A N/A B17–19
(3)

B19-20 (2) B21-22
(2)

All ones

Tail B20-25 (6) B21-26
(6)

B23-28 (6) B20-25
(6)

B21-26 (6) B23-28
(6)

Six zero-
bits

1-300

 wlanVHTSIGB

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Description

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

used to
terminate
the
convolutional
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetition

1 2 4
For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4
For 160
MHz, the
80 MHz
channel
is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

Algorithms

VHT-SIG-B Processing

The “VHT-SIG-B” on page 1-299 field is used to set up the data rate and to fine-tune
MIMO reception. For single user packets, since the length information can be recovered
from the L-SIG and VHT-SIG-A field information, it is not strictly required for the
receiver to decode the “VHT-SIG-B” on page 1-299 field.

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.8.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN

1-301

1 functions — Alphabetical List

Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanVHTConfig | wlanVHTData | wlanVHTLTF | wlanVHTSIGBRecover

Introduced in R2015b

1-302

 wlanVHTSIGBRecover

wlanVHTSIGBRecover

Recover VHT-SIG-B information bits

Syntax

recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw)

recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw,userNumber,

numSTS)

recBits = wlanVHTSIGBRecover(___ ,cfgRec)

[recBits,eqSym] = wlanVHTSIGBRecover(___)

[recBits,eqSym,cpe] = wlanVHTSIGBRecover(___)

Description

recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered information bits from the “VHT-SIG-B” on page 1-31228 field for a single-
user transmission. Inputs include the received “VHT-SIG-B” on page 1-312 field, the
channel estimate, the noise variance estimate, and the channel bandwidth.

recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw,userNumber,

numSTS) returns the recovered information bits of a multiuser transmission for the user
of interest, userNumber, and the number of space-time streams, numSTS.

recBits = wlanVHTSIGBRecover(___ ,cfgRec) specifies algorithm information
using wlanRecoveryConfig object cfgRec.

[recBits,eqSym] = wlanVHTSIGBRecover(___) returns the equalized symbols,
eqSym, using the arguments from previous syntaxes.

[recBits,eqSym,cpe] = wlanVHTSIGBRecover(___) returns the common phase
error, cpe.

28. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-303

1 functions — Alphabetical List

Examples

Recover VHT-SIG-B Information Bits

Recover VHT-SIG-B bits in a perfect channel having 80 MHz channel bandwidth, one
space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 80 MHz. Using the
object, create a VHT-SIG-B waveform.

cfg = wlanVHTConfig('ChannelBandwidth','CBW80');

[txSig,txBits] = wlanVHTSIGB(cfg);

For a channel bandwidth of 80 MHz, there are 242 occupied subcarriers. The channel
estimate array dimensions for this example must be [Nst,Nsts,Nr] = [242,1,1]. The
example assumes a perfect channel and one receive antenna. Therefore, specify the
channel estimate as a column vector of ones and the noise variance estimate as zero.

chEst = ones(242,1);

noiseVarEst = 0;

Recover the VHT-SIG-B. Verify that the received information bits are identical to the
transmitted bits.

rxBits = wlanVHTSIGBRecover(txSig,chEst,noiseVarEst,'CBW80');

isequal(txBits,rxBits)

ans =

 logical

 1

Recover VHT-SIG-B Using Zero-Forcing Equalizer

Recover the VHT-SIG-B using a zero-forcing equalizer in an AWGN channel having 160
MHz channel bandwidth, one space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 160 MHz. Using the
object, create a VHT-SIG-B waveform.

1-304

 wlanVHTSIGBRecover

cfg = wlanVHTConfig('ChannelBandwidth','CBW160');

[txSig,txBits] = wlanVHTSIGB(cfg);

Pass the transmitted VHT-SIG-B through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',0.1);

rxSig = awgnChan(txSig);

Using wlanRecoveryConfig, set the equalization method to zero-forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the VHT-SIG-B. Verify that the received information has no bit errors.

rxBits = wlanVHTSIGBRecover(rxSig,ones(484,1),0.1,'CBW160',cfgRec);

numErr = biterr(txBits,rxBits)

numErr =

 0

Recover VHT-SIG-B in 2x2 MIMO Channel

Recover VHT-SIG-B in a 2x2 MIMO channel for an SNR=10 dB and a receiver that has a
9 dB noise figure. Confirm that the information bits are recovered correctly.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW20';

fs = 20e6;

Create a VHT configuration object with 20 MHz bandwidth and two transmission paths.
Generate the L-LTF and VHT-SIG-B waveforms.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumTransmitAntennas',2, ...

 'NumSpaceTimeStreams',2);

txVHTLTF = wlanVHTLTF(vht);

[txVHTSIGB,txVHTSIGBBits] = wlanVHTSIGB(vht);

Pass the VHT-LTF and VHT-SIG-B waveforms through a 2x2 TGac channel.

1-305

1 functions — Alphabetical List

tgacChan = wlanTGacChannel('NumTransmitAntennas',2, ...

 'NumReceiveAntennas',2, 'ChannelBandwidth',cbw,'SampleRate',fs);

rxVHTLTF = tgacChan(txVHTLTF);

rxVHTSIGB = tgacChan(txVHTSIGB);

Add white noise for an SNR = 10dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...

 'SNR',10);

rxVHTLTF = chNoise(rxVHTLTF);

rxVHTSIGB = chNoise(rxVHTSIGB);

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The
noise variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise
figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(fs)+9)/10);

rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxVHTLTF = rxNoise(rxVHTLTF);

rxVHTSIGB = rxNoise(rxVHTSIGB);

Demodulate the VHT-LTF signal and use it to generate a channel estimate.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);

chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Recover the VHT-SIG-B information bits. Display the scatter plot of the equalized
symbols.

[recVHTSIGBBits,eqSym,cpe] = wlanVHTSIGBRecover(rxVHTSIGB,chEst,nVar,cbw);

scatterplot(eqSym)

1-306

 wlanVHTSIGBRecover

Display the common phase error.

cpe

cpe =

 0.0318

Determine the number of errors between the transmitted and received VHT-SIG-B
information bits.

numErr = biterr(txVHTSIGBBits,recVHTSIGBBits)

1-307

1 functions — Alphabetical List

numErr =

 0

Input Arguments

rxSig — Received VHT-SIG-B
matrix

Received VHT-SIG-B field, specified as an NS-by-NR matrix. NS is the number of samples
and increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimate
3-D array

Channel estimate, specified as an NST-by-NSTS-by-NR array. NST is the number of
occupied subcarriers. NSTS is the number of space-time streams. For multiuser
transmissions, NSTS is the total number of space-time streams for all users . NR is the
number of receive antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

1-308

 wlanVHTSIGBRecover

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The channel estimate is based on the “VHT-LTF” on page 1-314.

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'.

Data Types: char

userNumber — Number of the user
integer from 1 to NUsers

Number of the user in a multiuser transmission, specified as an integer having a value
from 1 to NUsers. NUsers is the total number of users.

Data Types: double

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in a multiuser transmission, specified as a vector. The
number of space-time streams is a 1-by-NUsers vector of integers from 1 to 4, where NUsers
is an integer from 1 to 4.
Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

1-309

1 functions — Alphabetical List

Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

Note: If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

1-310

 wlanVHTSIGBRecover

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

Output Arguments

recBits — Recovered VHT-SIG information
vector

Recovered VHT-SIG-B information bits, returned as an Nb-by-1 column vector. Nb is
the number of recovered VHT-SIG-B information bits and increases with the channel
bandwidth. The output is for a single user as determined by userNumber.

The number of output bits is proportional to the channel bandwidth.

ChannelBandwidth Nb

'CBW20' 26

'CBW40' 27

'CBW80' 29

'CBW160' 29

See “VHT-SIG-B” on page 1-312 for information about the meaning of each bit in the
field.

1-311

1 functions — Alphabetical List

eqSym — Equalized symbols
matrix

Equalized symbols, returned as an NSD-by-1 column vector. NSD is the number of data
subcarriers.

NSD increases with the channel bandwidth.

ChannelBandwidth NSD

'CBW20' 52

'CBW40' 108

'CBW80' 234

'CBW160' 468

cpe — Common phase error
column vector

Common phase error in radians, returned as a scalar.

More About

VHT-SIG-B

The very high throughput signal B field (VHT-SIG-B) is used for multi-user scenario to
set up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and
is transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF
and the data portion of the VHT format PPDU.

1-312

 wlanVHTSIGBRecover

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-
MPDU length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013,
Section 22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies
with the channel bandwidth and the assignment depends on whether single user or
multi-user scenario in allocated. For single user configurations, the same information is
available in the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Description

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-
SIG-B

B0-15 (16) B0-16
(17)

B0-18 (19) B0-16
(17)

B0-18 (19) B0-20
(21)

A
variable-
length
field that
indicates
the size of
the data
payload in
four-byte
units. The
length of
the field
depends
on the
channel
bandwidth.

VHT-
MCS

B16-19 (4) B17-20
(4)

B19-22 (4) N/A N/A N/A A four-
bit field
that is
included
for multi-
user
scenarios
only.

ReservedN/A N/A N/A B17–19
(3)

B19-20 (2) B21-22
(2)

All ones

Tail B20-25 (6) B21-26
(6)

B23-28 (6) B20-25
(6)

B21-26 (6) B23-28
(6)

Six zero-
bits

1-313

1 functions — Alphabetical List

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Description

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

used to
terminate
the
convolutional
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetition

1 2 4
For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4
For 160
MHz, the
80 MHz
channel
is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

VHT-LTF

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected

1-314

 wlanVHTSIGBRecover

MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

PPDU

PLCP protocol data unit

The PPDU is the complete PLCP frame, including PLCP headers, MAC headers, the
MAC data field, and the MAC and PLCP trailers.

Algorithms

VHT-SIG-B Recovery

The “VHT-SIG-B” on page 1-312 field consists of one symbol and resides between the
VHT-LTF field and the data portion of the packet structure for the VHT format PPDUs.

For single-user packets, you can recover the length information from the L-SIG and VHT-
SIG-A field information. Therefore, it is not strictly required for the receiver to decode
the “VHT-SIG-B” on page 1-312 field. For multiuser transmissions, recovering the
VHT-SIG-B field provides packet length and MCS information for each user.

1-315

1 functions — Alphabetical List

1-316

 wlanVHTSIGBRecover

For “VHT-SIG-B” on page 1-312 details, refer to IEEE Std 802.11ac™-2013 [1], Section
22.3.4.8, and Perahia [2], Section 7.3.2.4.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

See Also
wlanRecoveryConfig | wlanVHTConfig | wlanVHTLTFChannelEstimate |
wlanVHTLTFDemodulate | wlanVHTSIGB

Introduced in R2015b

1-317

1 functions — Alphabetical List

wlanVHTSTF

Generate VHT-STF waveform

Syntax

y = wlanVHTSTF(cfg)

Description

y = wlanVHTSTF(cfg) generates a “VHT-STF” on page 1-32229 time-domain
waveform for the specified configuration object. See “VHT-STF Processing” on page
1-323 for waveform generation details.

Examples

Generate VHT-STF Waveform

Create a VHT configuration object with an 80 MHz channel bandwidth. Generate and
plot the VHT-STF waveform.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW80';

vstfOut = wlanVHTSTF(cfgVHT);

size(vstfOut);

plot(abs(vstfOut))

xlabel('Samples')

ylabel('Amplitude')

29. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1-318

 wlanVHTSTF

The 80 MHz waveform is a single OFDM symbol with 320 complex time-domain output
samples. The waveform contains the repeating short training field pattern.

Input Arguments

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSTF function
uses the object properties indicated.

1-319

1 functions — Alphabetical List

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

1-320

 wlanVHTSTF

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Output Arguments

y — VHT-STF time-domain waveform
matrix

1-321

1 functions — Alphabetical List

“VHT-STF” on page 1-322 time-domain waveform, returned as an NS-by-NT matrix. NS
is the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS

'CBW20' 80

'CBW40' 160

'CBW80' 320

'CBW160' 640

See “VHT-STF Processing” on page 1-323 for waveform generation details.
Data Types: double
Complex Number Support: Yes

More About

VHT-STF

The very high throughput short training field (VHT-STF) is a single OFDM symbol
(4 μs in length) that is used to improve automatic gain control estimation in a MIMO
transmission. It is located between the VHT-SIG-A and VHT-LTF portions of the VHT
packet.

The frequency domain sequence used to construct the VHT-STF for a 20 MHz
transmission is identical to the L-STF sequence. Duplicate L-STF sequences are
frequency shifted and phase rotated to support VHT transmissions for the 40 MHz, 80
MHz, and 160 MHz channel bandwidths. As such, the L-STF and HT-STF are subsets of
the VHT-STF.

1-322

 wlanVHTSTF

The VHT-STF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.4.

Algorithms

VHT-STF Processing

The “VHT-STF” on page 1-322 is one OFDM symbol long and is processed for
improved gain control in MIMO configurations. For algorithm details, refer to IEEE Std
802.11ac-2013 [1], Section 22.3.4.6.

References

[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

See Also
wlanLSTF | wlanVHTConfig | wlanVHTLTF | wlanVHTSIGA

Introduced in R2015b

1-323

1 functions — Alphabetical List

wlanWaveformGenerator

Generate WLAN waveform

Syntax

waveform = wlanWaveformGenerator(bits,cfgFormat)

waveform = wlanWaveformGenerator(bits,cfgFormat,Name,Value)

Description

waveform = wlanWaveformGenerator(bits,cfgFormat) generates a waveform
for the specified information bits, and format configuration. For more information, see
“IEEE 802.11 PPDU Format” on page 1-330.

waveform = wlanWaveformGenerator(bits,cfgFormat,Name,Value) overrides
default generator configuration values using one or more Name,Value pair arguments.

Examples

Generate VHT Waveform

Generate a time-domain signal for an 802.11ac VHT transmission with one packet.

Create the format configuration object, vht. Assign two transmit antennas and two
spatial streams, and disable STBC. Set the MCS to 1, which assigns QPSK modulation
and a 1/2 rate coding scheme per the 802.11 standard. Set the number of bytes in the A-
MPDU pre-EOF padding, APEPLength, to 1024.

vht = wlanVHTConfig;

vht.NumTransmitAntennas = 2;

vht.NumSpaceTimeStreams = 2;

vht.STBC = false;

vht.MCS = 1;

vht.APEPLength = 1024;

1-324

 wlanWaveformGenerator

Generate the transmission waveform.

bits = [1;0;0;1];

txWaveform = wlanWaveformGenerator(bits,vht);

Generate VHT Waveform with Random Scrambler State

Configure wlanWaveformGenerator to produce a time-domain signal for an 802.11ac
VHT transmission with five packets and a 30 microsecond idle period between packet.
Use a random scrambler initial state for each packet.

Create a VHT configuration object and confirm the channel bandwidth for scaling the x-
axis of the plot.

vht = wlanVHTConfig;

vht.ChannelBandwidth

ans =

CBW80

Generate and plot the waveform. Display the time in microseconds on the x-axis.

numPkts = 5;

scramInit = randi([1 127],numPkts,1);

txWaveform = wlanWaveformGenerator([1;0;0;1],vht,'NumPackets',numPkts,'IdleTime',30e-6,'ScramblerInitialization',scramInit);

time = [0:length(txWaveform)-1]/80e-6;

plot(time,abs(txWaveform))

xlabel ('Time (microseconds)')

ylabel('Amplitude')

1-325

1 functions — Alphabetical List

Five packets separated by 30 microsecond idle periods.

Input Arguments

bits — Information bits
0 | 1 | vector | cell array | vector cell array

Information bits for a single user, including any MAC padding representing multiple
concatenated PSDUs, specified as a binary vector stream. Internally, the input bits
vector is looped as required to generate the specified number of packets. The property
cfgFormat.PSDULength specifies the number of data bits taken from the bit stream for

1-326

 wlanWaveformGenerator

each transmission packet generated. The property NumPackets specifies the number of
packets to generate.

• When bits is a cell array, each element of the cell array must be a double or int8
typed binary vector.

• When bits is a vector or scalar cell array, the specified bits apply to all users.
• When bits is a vector cell array, each element applies to each user correspondingly.

For each user, if the number of bits required across all packets of the generation
exceeds the length of the vector provided, the applied bit vector is looped. Looping
on the bits allows you to define a short pattern, for example. [1;0;0;1], that is
repeated as the input to the PSDU coding across packets and users. In each packet
generation, for the ith user, the ith element of the cfgFormat.PSDULength indicates
the number of data bytes taken from its stream. Multiple PSDULength by eight to
compute the number of bits

Example: [1 1 0 1 0 1 1]

Data Types: double | int8

cfgFormat — Packet format configuration
wlanS1GConfig object | wlanVHTConfig object | wlanHTConfig object |
wlanNonHTConfig object

Packet format configuration, specified as a wlanS1GConfig, wlanVHTConfig,
wlanHTConfig, or wlanNonHTConfig object. The type of cfgFormat object determines
the IEEE 802.11 format of the generated waveform. For a description of the properties
and valid settings for the various packet format configuration objects, see:

• wlanS1GConfig Properties
• wlanVHTConfig Properties
• wlanHTConfig Properties
• wlanNonHTConfig Properties

The data rate and PSDU length of generated PPDUs is determined based on the
properties of the packet format configuration object.

Name,Value — Name-Value Pair Arguments
Name1,Value1,...,NameN,ValueN

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-327

1 functions — Alphabetical List

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NumPackets',21,'ScramblerInitialization',[52,17]

NumPackets — Number of packets
1 (default) | positive integer

Number of packets to generate in a single function call, specified as a positive integer.
Data Types: double

IdleTime — Idle time added after each packet
0 (default) | nonnegative scalar

Idle time added after each packet, specified as a nonnegative scalar in seconds. If
IdleTime is greater than the default value of zero, it cannot be less than 2 µs.

Example: 20e-6

Data Types: double

ScramblerInitialization — Initial scrambler state
93 (default) | integer from 1 to 127 | matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer from 1 to 127, or as an NP-by-NUsers matrix of integers with values from 1 to 127.
NP is the number of packets, and NUsers is the number of users. The default value of 93 is
the example state given in IEEE Std 802.11-2012, Section L.1.5.2.

• When specified as a scalar, the same scrambler initialization value is used to generate
each packet for each user of a multipacket waveform.

• When specified as a matrix, each element represents an initial state of the scrambler
for packets in the multipacket waveform generated for each user. Each column
specifies the initial states for a single user, therefore up to four columns are
supported. If a single column is provided, the same initial states are used for all users.
Each row represents the initial state of each packet to generate. Therefore, a matrix
with multiple rows enables you to use a different initial state per packet, where the
first row contains the initial state of the first packet. If the number of packets to
generate exceeds the number of rows of the matrix provided, the rows are looped
internally.

The waveform generator configuration object does not validate the initial state of the
scrambler.

1-328

 wlanWaveformGenerator

Note: ScramblerInitialization applies to OFDM-based formats only.

Example: [3 56 120]

Data Types: double | int8

WindowTransitionTime — Duration of the window transition
1.0e-07 (default) | positive scalar less than or equal to 6.4e-06

Duration of the window transition applied to each OFDM symbol, specified in seconds as
a positive scalar less than or equal to 1.6e-05. For a transition time of zero, no windowing
is applied.

The maximum permitted WindowTransitionTime value depends on the type of guard
interval, format and channel bandwidth:

Maximum Permitted WindowTransitionTime (seconds)Guard
Interval
Type

S1G VHT HT-mixed non-HT

 1, 2, 4, 8,
16 MHz

20, 40, 80,
160 MHz

20, 40 MHz 20 MHz 10 MHz 5 MHz

Long 1.6e-05 1.6e-06 1.6e-06 1.6e-06 3.2e-06 6.4e-06
Short 8.0e-06 8.0e-07 8.0e-07 not applicable

Data Types: double

Output Arguments

waveform — Packetized waveform
matrix

Packetized waveform, returned as an NS-by-NT matrix. NS is the number of time-domain
samples, and NT is the number of transmit antennas. waveform contains one or more
packets of the same “IEEE 802.11 PPDU Format” on page 1-330. Each packet can
contain different information bits. Waveform packet windowing is enabled by setting
WindowTransitionTime > 0. Windowing is enabled by default.

For more information, see “Waveform Sampling Rate” on page 1-332, “OFDM Symbol
Windowing” on page 1-333, and “Waveform Looping” on page 1-335.

1-329

1 functions — Alphabetical List

Data Types: double
Complex Number Support: Yes

More About

IEEE 802.11 PPDU Format

IEEE 802.113031 PPDU formats defined for transmission include S1G, VHT, HT, and
non-HT. The PPDU field structure consists of preamble and data portions. This figure
illustrates the VHT, HT-mixed, and non-HT PPDU field structure.

30. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

31. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All
rights reserved.

1-330

 wlanWaveformGenerator

Subcarrier duration varies with channel bandwidth for the legacy preamble fields.

Preamble Field DurationChannel Bandwidth
(MHz) TSHORT: L-STF duration TLONG: L-LTF duration TSIGNAL: Duration of

the L-SIG symbol

20, 40, 80, 160 8 μs 8 μs 4 μs
10 16 μs 16 μs 8 μs
5 32 μs 32 μs 16 μs

In S1G, there are three transmission modes:

• ≥2-MHz long preamble mode
• ≥2-MHz short preamble mode
• 1-MHz mode

Each transmission mode has a specific PPDU preamble structure:

• An S1G ≥2-MHz long preamble mode PPDU supports single-user and multi-user
transmissions. The long preamble PPDU consists of two portions; the omni-directional
portion and the beam-changeable portion.

• The omni-directional portion is transmitted to all users without beamforming. It
consists of three fields:

• STF - The short training field is 2 symbols long. It is used for coarse
synchronization.

• LTF1 - The first long training field is 2 symbols long. It is used for fine
synchronization and initial channel estimation.

• SIG-A - The signaling A field is 2 symbols long. The receiver decodes the
signaling A field to determine transmission parameters relevant to all users.

• The beam-changeable portion can be beamformed to each user. It consists of four
fields:

• D-STF - The beamformed short training field is 1 symbol long. It is used by the
receiver for automatic gain control.

• D-LTF-N - The beamformed long training fields are 1 symbol long per D-LTF.
They are used for MIMO channel estimation.

1-331

1 functions — Alphabetical List

• SIG-B - The signaling B field is 1 symbol long. In a multi-user transmission,
the SIG-B signals the MCS for each user. In a single-user transmission,
the MCS is signaled in the SIG-A field of the omni-directional portion of
the preamble. Therefore, in a single-user transmission the SIG-B symbol
transmitted is an exact repetition of the first D-LTF. This repetition allows for
improved channel estimation.

• Data - The data field is variable in length. It carries the user data payload.
• An S1G ≥2-MHz short preamble mode PPDU supports single-user transmissions. All

fields in the PPDU can be beamformed. The PPDU consists of these five fields:

• STF - The short training field is 2 symbols long. It is used for coarse
synchronization.

• LTF1 - The first long training field is 2 symbols long. It is used for fine
synchronization and initial channel estimation.

• SIG - The signaling field is 2 symbols long. The receiver decodes the signaling field
to determine transmission parameters.

• LTF2-N - The subsequent long training fields are 1 symbol long per LTF. They are
used for MIMO channel estimation. NSYMBOLS = 1 per subsequent LTF

• Data - The data field is variable in length. It carries the user data payload.
• An S1G 1-MHz mode PPDU supports single-user transmissions. It is composed of the

same five fields as the S1G ≥2-MHz short preamble mode PPDU and all fields can
be beamformed. An S1G 1-MHz mode PPDU has longer STF, LTF1, and SIG fields
so this narrower bandwidth mode can achieve similar sensitivity to the S1G ≥2-MHz
short preamble mode transmissions. The STF is 4 symbols, the LTF1 is 4 symbols,
and the SIG is 6 symbols.

Waveform Sampling Rate

At the output of wlanWaveformGenerator, the generated waveform has a sampling
rate equal to the channel bandwidth.

For all OFDM modulation WLAN configurations, the channel bandwidth is configured
via the ChannelBandwidth property of the format configuration object.

For supported DSSS modulation WLAN configurations, the chipping rate is always 11
MHz, as specified in IEEE 802.11-2012, Section 17.1.1.

This table indicates the waveform sampling rates associated with standard channel
spacing for each configuration format prior to filtering:

1-332

 wlanWaveformGenerator

Configuration
Object

Modulation ChannelBandwidthChannel Spacing
(MHz)

Sampling Rate
(MHz)

'CBW1' 1 1
'CBW2' 2 2
'CBW4' 4 4
'CBW8' 8 8

wlanS1GConfig OFDM

'CBW16' 16 16
'CBW20' 20 20
'CBW40' 40 40
'CBW80' 80 80

wlanVHTConfig OFDM

'CBW160' 160 160
'CBW20' 20 20

wlanHTConfig OFDM
'CBW40' 40 40

DSSS/CCK not applicable 11 11
'CBW5' 5 5
'CBW10' 10 10

wlanNonHTConfig
OFDM

'CBW20' 20 20

OFDM Symbol Windowing

OFDM naturally lends itself to processing with Fourier transforms. A negative
side effect of using an IFFT to process OFDM symbols is the resulting symbol-
edge discontinuities. These discontinuities cause out-of-band emissions in the
transition region between consecutive OFDM symbols. To smooth the discontinuity
between symbols and reduce the intersymbol out-of-band emissions, you can use the
wlanWaveformGenerator function to apply OFDM symbol windowing. To apply
windowing set WindowTransitionTime to greater than zero.

When windowing is applied, transition regions are added to the leading and trailing edge
of the OFDM symbol by the wlanWaveformGenerator. Windowing extends the length of
the OFDM symbol by WindowTransitionTime (TTR).

1-333

1 functions — Alphabetical List

The extended waveform is windowed by point-wise multiplication in the time domain,
using the windowing function specified in IEEE Std 802.11-2012 [1], Section 18.3.2.5:

w t

t

T

T
t

T

T
T

TR

TR TR

TR()

sin .

=

+
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - < <Ê

ËÁ
ˆ
¯̃

<

2

2
0 5

2 2

1
2

p

tt T
T

t T

T
T

T
t T

T

< -Ê
ËÁ

ˆ
¯̃

-
-Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - < < +

TR

TR

TR T

2

0 5
2

2

2
sin .p RR

2
Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô

The windowing function applies over the leading and trailing portion of the OFDM
symbol:

• –TTR/2 to TTR/2
• –T – TTR/2 to T + TTR/2

1-334

 wlanWaveformGenerator

After windowing is applied to each symbol, point-wise addition is used to combine
the overlapped regions between consecutive OFDM symbols. Specifically, the trailing
shoulder samples at the end of OFDM symbol 1 (T – TTR/2 to T + TTR/2) are added to the
leading shoulder samples at the beginning of OFDM symbol 2 (–TTR/2 to TTR/2).

Smoothing the overlap between consecutive OFDM symbols in this manner reduces the
out-of-band emissions. wlanWaveformGenerator applies OFDM symbol windowing
between:

• Each OFDM symbol within a packet
• Consecutive packets within the waveform, considering the IdleTime between packets
• The last and the first packet of the generated waveform

For more information on how wlanWaveformGenerator handles windowing for
consecutive packet IdleTime and for the last waveform packet, see “Waveform Looping”
on page 1-335.

Waveform Looping

To produce a continuous input stream, you can have your code loop on a waveform from
the last packet back to the first packet.

1-335

1 functions — Alphabetical List

Applying windowing to the last and first OFDM symbols of the generated waveform
smooths the transition between the last and first packet of the waveform. When
WindowTransitionTime is greater than zero, wlanWaveformGenerator applies
“OFDM Symbol Windowing” on page 1-333.

When looping a waveform, the last symbol of packet_N is followed by the first OFDM
symbol of packet_1. If the waveform has only one packet, the waveform loops from the
last OFDM symbol of the packet to the first OFDM symbol of the same packet.

When windowing is applied to the last OFDM symbol of a packet and the first OFDM of
the next packet, the idle time between the packets factors into the windowing applied.
Specify the idle time using the IdleTime property of wlanWaveformGenerator.

• If IdleTime is zero, “OFDM Symbol Windowing” on page 1-333 is applied as it
would be for consecutive OFDM symbols within a packet.

• If the IdleTime is nonzero, the extended windowed portion of the first OFDM
symbol in packet_1 (from –TTR/2 to 0–TS), is included at the end of the waveform. This
extended windowed portion is applied for looping when computing the “OFDM Symbol
Windowing” on page 1-333 between the last OFDM symbol of packet_N and the
first OFDM symbol of packet_1. TS is the sample time.

1-336

 wlanWaveformGenerator

References

[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig

Introduced in R2015b

1-337

2

Classes — Alphabetical List

2 Classes — Alphabetical List

wlanGeneratorConfig Properties
Define parameter values for waveform generation

Description
The wlanGeneratorConfig object specifies the non-format-specific properties necessary
for generating IEEE 802.11 [1] standards-compliant waveforms.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanGeneratorConfig object. Then modify the default setting for the
NumPackets property.

cfgGen = wlanGeneratorConfig;

cfgGen.NumPackets = 5;

Note: To override default waveform generator configuration values, use the
wlanWaveformGenerator(bits,cfgFormat,Name1,Value1,...,NameN,ValueN)

syntax.

Use of wlanGeneratorConfig is not recommended. Therefore, use of the
wlanWaveformGenerator(bits,cfgFormat,cfgWaveGen) syntax is discouraged as
well.

Waveform Generation Configuration

NumPackets — Number of packets
1 (default) | positive integer

Number of packets to generate in a single function call, specified as a positive integer.
Data Types: double

IdleTime — Idle time added after each packet
0 (default) | nonnegative scalar

Idle time added after each packet, specified as a nonnegative scalar in seconds. If
IdleTime is greater than the default value of zero, it cannot be less than 2 µs.

2-2

 wlanGeneratorConfig Properties

Example: 20e-6

Data Types: double

ScramblerInitialization — Initial scrambler state
93 (default) | integer from 1 to 127 | matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer from 1 to 127, or as an NP-by-NUsers matrix of integers with values from 1 to 127.
NP is the number of packets, and NUsers is the number of users. The default value of 93 is
the example state given in IEEE Std 802.11-2012, Section L.1.5.2.

• When specified as a scalar, the same scrambler initialization value is used to generate
each packet for each user of a multipacket waveform.

• When specified as a matrix, each element represents an initial state of the scrambler
for packets in the multipacket waveform generated for each user. Each column
specifies the initial states for a single user, therefore up to four columns are
supported. If a single column is provided, the same initial states are used for all users.
Each row represents the initial state of each packet to generate. Therefore, a matrix
with multiple rows enables you to use a different initial state per packet, where the
first row contains the initial state of the first packet. If the number of packets to
generate exceeds the number of rows of the matrix provided, the rows are looped
internally.

The waveform generator configuration object does not validate the initial state of the
scrambler.

Note: ScramblerInitialization applies to OFDM-based formats only.

Example: [3 56 120]

Data Types: double | int8

WindowTransitionTime — Duration of the window transition
1.0e-07 (default) | positive scalar less than or equal to 6.4e-06

Duration of the window transition applied to each OFDM symbol, specified in seconds as
a positive scalar less than or equal to 1.6e-05. For a transition time of zero, no windowing
is applied.

2-3

2 Classes — Alphabetical List

The maximum permitted WindowTransitionTime value depends on the type of guard
interval, format and channel bandwidth:

Maximum Permitted WindowTransitionTime (seconds)Guard
Interval
Type

S1G VHT HT-mixed non-HT

 1, 2, 4, 8,
16 MHz

20, 40, 80,
160 MHz

20, 40 MHz 20 MHz 10 MHz 5 MHz

Long 1.6e-05 1.6e-06 1.6e-06 1.6e-06 3.2e-06 6.4e-06
Short 8.0e-06 8.0e-07 8.0e-07 not applicable

Data Types: double

See Also
wlanGeneratorConfig | wlanHTConfig | wlanNonHTConfig | wlanVHTConfig |
wlanWaveformGenerator

Introduced in R2015b

2-4

 wlanHTConfig Properties

wlanHTConfig Properties
Define parameter values for HT format packet

Description
The wlanHTConfig object specifies the transmission properties for the IEEE 802.11 high
throughput (HT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanHTConfig object. Then modify the default setting for the
NumTransmitAntennas property.

cfgHT = wlanHTConfig;

cfgHT.numTransmitAntennas = 2;

HT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

Data Types: char

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

2-5

2 Classes — Alphabetical List

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is
the number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams.
NT is the number of transmit antennas. In this case, each data and pilot subcarrier
can have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

2-6

 wlanHTConfig Properties

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix
having three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as
an integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS
(Note 1) Modulation Coding Rate

0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2

2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4

3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4

5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3

6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4

7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to
the number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a
3/4 coding rate.

2-7

2 Classes — Alphabetical List

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding, and 'LDPC' indicates low density
parity check coding.
Data Types: char | cell

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.

Example: 512

Data Types: double

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

2-8

 wlanHTConfig Properties

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2015b

2-9

2 Classes — Alphabetical List

wlanNonHTConfig Properties
Define parameter values for non-HT format packet

Description

The wlanNonHTConfig object specifies the transmission properties for the IEEE 802.11
non-high throughput (non-HT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanNonHTConfig object. Then modify the default setting for the PSDULength
property.

cfgNonHT = wlanNonHTConfig;

cfgNonHT.PSDULength = 3025;

Non-HT Format Configuration

Modulation — Modulation type for non-HT transmission
'OFDM' (default) | 'DSSS'

Modulation type for the non-HT transmission packet, specified as 'OFDM' or 'DSSS'.

Data Types: char

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.

Data Types: char

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

2-10

 wlanNonHTConfig Properties

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

Data Rate (Mbps)MCS Modulation Coding
Rate

Coded
bits per

subcarrier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth

0 BPSK 1/2 1 48 24 6 3 1.5

1 BPSK 3/4 1 48 36 9 4.5 2.25

2 QPSK 1/2 2 96 48 12 6 3

3 QPSK 3/4 2 96 72 18 9 4.5

4 16QAM 1/2 4 192 96 24 12 6

5 16QAM 3/4 4 192 144 36 18 9

6 64QAM 2/3 6 288 192 48 24 12

7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

DataRate — DSSS modulation data rate
'1Mbps' (default) | '2Mbps' | '5.5Mbps' | '11Mbps'

DSSS modulation data rate, specified as '1Mbps', '2Mbps', '5.5Mbps', or '11Mbps'.

• '1Mbps' uses differential binary phase shift keying (DBPSK) modulation with a 1
Mbps data rate.

• '2Mbps' uses differential quadrature phase shift keying (DQPSK) modulation with a
2 Mbps data rate.

• '5.5Mbps' uses complementary code keying (CCK) modulation with a 5.5 Mbps data
rate.

• '11Mbps' uses complementary code keying (CCK) modulation with an 11 Mbps data
rate.

For IEEE Std 802.11-2012, Section 16, only '1Mbps' and '2Mbps' apply

2-11

2 Classes — Alphabetical List

Data Types: char

Preamble — DSSS modulation preamble type
'Long' (default) | 'Short'

DSSS modulation preamble type, specified as 'Long' or 'Short'.

• When DataRate is '1Mbps', the Preamble setting is ignored and 'Long' is used.
• When DataRate is greater than '1Mbps', the Preamble property is available and

can be set to 'Long' or 'Short'.

For IEEE Std 802.11-2012, Section 16, 'Short' does not apply.

Data Types: char

LockedClocks — Clock locking indication for DSSS modulation
true (default) | false

Clock locking indication for DSSS modulation, specified as a logical. Bit 2 of the
SERVICE field is the Locked Clock Bit. A true setting indicates that the PHY
implementation derives its transmit frequency clock and symbol clock from the same
oscillator. For more information, see IEEE Std 802.11-2012, Section 17.2.3.5 and Section
19.1.3.

Note:

• IEEE Std 802.11-2012, Section 19.3.2.2, specifies locked clocks is required for all
ERP systems when transmitting at the ERP-PBCC rate or at a data rate described in
Section 17. Therefore to model ERP systems, set LockedClocks to true.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

2-12

 wlanNonHTConfig Properties

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG
| wlanLSIGRecover | wlanLSTF | wlanNonHTConfig | wlanNonHTData |
wlanNonHTDataRecover | wlanWaveformGenerator

Introduced in R2015b

2-13

2 Classes — Alphabetical List

wlanS1GConfig Properties
Define parameter values for S1G format packet

Description

The wlanS1GConfig object specifies the transmission properties for the IEEE 802.11
sub 1 GHz (S1G) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanS1GConfig object. Then modify the default setting for the
ChannelBandwidth property.

cfgS1G = wlanS1GConfig;

cfgS1G.ChannelBandwidth = 'CBW2';

S1G Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW2' (default) | 'CBW1' | 'CBW4' | 'CBW8' | 'CBW16'

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4', 'CBW8', or 'CBW16'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Example: 'CBW16' sets the channel bandwidth to 16 MHz.

Data Types: char

Preamble — Preamble type
'Short' (default) | 'Long'

Preamble type, specified as 'Short' or 'Long'. This property applies only when
ChannelBandwidth is not 'CBW1'.

Data Types: char

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

2-14

 wlanS1GConfig Properties

Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 4

Number of transmit antennas, specified as a scalar integer from 1 to 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 4 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector. (Nsts)

• For a single user, the number of space-time streams is an integer scalar from 1 to 4.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where NUsers ≤ 4. The sum total of space-time streams for all
users, Nsts_Total, must not exceed four.

Example: [1 1 2] indicates number of space-time streams for three users, where the
first user gets 1 space-time stream, the second user gets 1 space-time stream, and the
third user gets 2 space-time streams. The total number of space-time streams assigned is
4.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

2-15

2 Classes — Alphabetical List

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation
mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW1' 26 24 2

'CBW2' 56 52 4

'CBW4' 114 108 6

'CBW8' 242 234 8

'CBW16' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

2-16

 wlanS1GConfig Properties

Beamforming — Enable beamforming in a long preamble packet
true (default) | false

Enable beamforming in a long preamble packet, specified as a logical. Beamforming
is performed when this setting is true. This property applies for a long preamble
(Preamble = 'Long') with NumUsers = 1 and SpatialMapping = 'Custom'. The
SpatialMappingMatrix property specifies the beamforming steering matrix.

Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 10 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 10.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 10, where NUsers ≤ 4.

MCS Modulation Coding Rate Comment

0 BPSK 1/2

2-17

2 Classes — Alphabetical List

MCS Modulation Coding Rate Comment

1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6
10 BPSK 1/2 Applies only for

ChannelBandwidth = 'CBW1'

Data Types: double

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
256 (default) | integer from 0 to 65,535 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as an integer scalar or
vector.

• For a single user, APEPLength is a scalar integer from 0 to 65,535.
• For multiple users, APEPLength is a 1-by-NUsers vector of integers or a scalar with

values from 0 to 65,535, where NUsers ≤ 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field.

Note: Only aggregated data transmission is supported.

Data Types: double

PSDULength — Number of bytes carried in the user payload
integer scalar | integer vector

2-18

 wlanS1GConfig Properties

This property is read only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding, specified as an integer scalar or vector. For a null data packet (NDP), the PSDU
length is zero.

• For a single user, the PSDU length is an integer scalar from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

65,535, where NUsers ≤ 4.

PSDULength is calculated internally based on the APEPLength property and other
coding-related properties. It is accessible only by direct property call. When accessing
PSDULength, the object is validated.

Example: [1031 2065] is the PSDU length vector for a wlanS1GConfig object with two
users, where the MCS for the first user is 4 and the MCS for the second user is 8.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Note: For S1G, the first OFDM symbol within the data field always has a long guard
interval, even when GuardInterval is set to 'Short'.

Data Types: char

GroupID — Group identification number
1 (default) | integer from 1 to 62

Group identification number, specified as an integer scalar from 1 to 62. The group
identification number is signaled during a multi-user transmission. Therefore this
property applies for a long preamble (Preamble = 'Long') and when NumUsers is
greater than 1.
Data Types: double

2-19

2 Classes — Alphabetical List

PartialAID — Abbreviated indication of the PSDU recipient
37 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as an integer scalar from 0 to
511.

• For an uplink transmission, the partial identification number is the last nine bits of
the basic service set identifier (BSSID) and must be an integer from 0 to 511.

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP and must be an integer
from 0 to 63.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

UplinkIndication — Enable uplink indication
false (default) | true

Enable uplink indication, specified as a logical. Set UplinkIndication to true for
uplink transmission or false for downlink transmission. This property applies when
ChannelBandwidth is not 'CBW1' and NumUsers = 1.

Data Types: logical

Color — Access point color identifier
0 (default) | integer scalar from 0 to 7

Access point (AP) color identifier, specified as an integer from 0 to 7. An AP includes a
Color number for the basic service set (BSS). An S1G station (STA) can use the Color
setting to determine if the transmission is within a BSS it is associated with. An S1G
STA can terminate the reception process for transmissions received from a BSS that it
is not associated with. This property applies when ChannelBandwidth is not 'CBW1',
NumUsers = 1, and UplinkIndication = false.

Data Types: double

TravelingPilots — Enable traveling pilots
false (default) | true

Enable traveling pilots, specified as a logical. Set TravelingPilots to true for
nonconstant pilot locations. Traveling pilots allow a receiver to track a changing channel
due to Doppler spread.

2-20

 wlanS1GConfig Properties

Data Types: logical

ResponseIndication — Response indication type
'None' (default) | 'NDP' | 'Normal' | 'Long'

Response indication type, specified as 'None', 'NDP', 'Normal', or 'Long'. This
information is used to indicate the presence and type of frame that will be sent a short
interframe space (SIFS) after the current frame transmission. The response indication
field is set based on the value of ResponseIndication and transmitted in;

• The SIG2 field of the S1G_SHORT preamble
• The SIG-A-2 field of the S1G_LONG preamble
• The SIG field of the S1G_1M preamble

Data Types: char

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

See Also
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig |
wlanWaveformGenerator

Introduced in R2016b

2-21

2 Classes — Alphabetical List

wlanRecoveryConfig Properties

Define parameter values for data recovery

Description

The wlanRecoveryConfig object specifies properties for recovering data from IEEE
802.11 transmissions.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanRecoveryConfig object. Then modify the default setting for the
OFDMSymbolOffset property.

cfgRec = wlanRecoveryConfig;

cfgRec.OFDMSymbolOffset = 0.65;

Date Recovery Configuration

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

2-22

 wlanRecoveryConfig Properties

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE’ or 'ZF’.

• 'MMSE’ indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF’ indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

Data Types: char

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char

MaximumLDPCIterationCount — Maximum number of decoding iterations in LDPC
12 (default) | positive scalar integer

2-23

2 Classes — Alphabetical List

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

See Also
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanVHTConfig

Introduced in R2015b

2-24

 wlanVHTConfig Properties

wlanVHTConfig Properties
Define parameter values for VHT format packet

Description
The wlanVHTConfig object specifies the transmission properties for the IEEE 802.11
very high throughput (VHT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters. For
example:

Create a wlanVHTConfig object. Then modify the default setting for the
ChannelBandwidth property.

cfgVHT = wlanVHTConfig;

cfgVHT.ChannelBandwidth = 'CBW20';

VHT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.

Data Types: char

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)

Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

2-25

2 Classes — Alphabetical List

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of

integers from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note: The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

Data Types: char

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property
to apply a beamforming steering matrix, and to rotate and scale the constellation

2-26

 wlanVHTConfig Properties

mapper output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is
the sum of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is
the number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4

'CBW40' 114 108 6

'CBW80' 242 234 8

'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical.
Beamforming is performed when setting is true. This property applies when NumUsers
equals 1 and SpatialMapping is set to 'Custom'. The SpatialMappingMatrix
property specifies the beamforming steering matrix.
Data Types: logical

2-27

2 Classes — Alphabetical List

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-
time streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note: STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16QAM 1/2

4 16QAM 3/4

5 64QAM 2/3

6 64QAM 3/4

7 64QAM 5/6

2-28

 wlanVHTConfig Properties

MCS Modulation Coding Rate

8 256QAM 3/4

9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default)
or 'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low
density parity check coding. Providing a character vector or a single cell character vector
defines the channel coding type for a single user or all users in a multiuser transmission.
By providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

PSDULength — Number of bytes carried in the user payload
integer | vector of integers

This property is read only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding. For a null data packet (NDP) the PSDU length is zero.

2-29

2 Classes — Alphabetical List

• For a single user, the PSDU length is a scalar integer from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

1,048,575, where the vector length,NUsers, is an integer from 1 to 4.

PSDULength is a read-only property and is calculated internally based on the
APEPLength property and other coding-related properties, as specified in IEEE Std
802.11ac-2013, Section 22.4.3. It is accessible by direct property call. When accessing
PSDULength, the object is validated.

Example: [1035 4150] is the PSDU length vector for a wlanVHTConfig object with two
users, where the MCS for the first user is 0 and the MCS for the second user is 3.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char

GroupID — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

• For an uplink transmission, the partial identification number is the last nine bits of
the basic service set identifier (BSSID).

2-30

 wlanVHTConfig Properties

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2015b

2-31

3

Classes — Alphabetical List

3 Classes — Alphabetical List

wlanTGacChannel System object

Filter signal through 802.11ac multipath fading channel

Description

The wlanTGacChannel System object™ filters an input signal through an 802.11ac
(TGac) multipath fading channel.

The fading processing assumes the same parameters for all NT-by-NR links of the TGac
channel, where NT is the number of transmit antennas and NR is the number of receive
antennas. Each link comprises all multipaths for that link.

To filter an input signal using a TGac multipath fading channel:

1 Define and set up your TGac channel object. See “Construction” on page 3-2.
2 Call step to filter the input signal through a TGac multipath fading channel

according to the properties of wlanTGacChannel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

tgac = wlanTGacChannel creates a TGac fading channel System object, tgac. This
object filters a real or complex input signal through the TGac channel to obtain the
channel-impaired signal.

tgac = wlanTGacChannel(Name,Value) creates a TGac channel object, tgac, with
the specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

3-2

 wlanTGacChannel System object

Properties

SampleRate

Input signal sample rate (Hz)

Sample rate of the input signal in Hz, specified as a real positive scalar. The default is
80e6.

DelayProfile

Delay profile model

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-
D', 'Model-E', or 'Model-F'. The default is 'Model-B'. To enable the
FluorescentEffect property, select either 'Model-D' or 'Model-E'.

The table summarizes the models.

ModelParameter

A B C D E F

Breakpoint distance
(m)

5 5 5 10 20 30

RMS delay spread
(ns)

0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050
Rician K-factor (dB) 0 0 0 3 6 6
Number of taps 1 9 14 18 18 18
Number of clusters 1 2 2 3 4 6

The number of clusters represents the number of independently modeled propagation
paths.

ChannelBandwidth

Channel bandwidth

Channel bandwidth in MHz, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
The default is 'CBW80', which corresponds to an 80 MHz channel bandwidth.

3-3

3 Classes — Alphabetical List

CarrierFrequency

RF carrier frequency

RF carrier frequency in Hz, specified as a real positive scalar. The default is 5.25e9.

NormalizePathGains

Normalize path gains

To normalize the fading processes such that the total power of the path gains, averaged
over time, is 0 dB, set this property to true (default). When you set this property to
false, the path gains are not normalized.

UserIndex

User index

User index, specified as a nonnegative integer scalar. The default is 0.

TransmissionDirection

Transmission direction

Transmission direction of the active link, specified as either 'Uplink' or 'Downlink'.
The default is 'Downlink'.

NumTransmitAntennas

Number of transmit antennas

Number of transmit antennas, specified as a positive integer scalar from 1 to 8. The
default is 1.

TransmitAntennaSpacing

Distance between transmit antenna elements

Distance between transmit antenna elements, specified as a real positive scalar
expressed in wavelengths. The default is 0.5. This property is available when
NumTransmitAntennas is greater than 1.

3-4

 wlanTGacChannel System object

NumReceiveAntennas

Number of receive antennas

Number of receive antennas, specified as a positive integer scalar from 1 to 8. The
default is 1.

ReceiveAntennaSpacing

Distance between receive antenna elements

Distance between receive antenna elements, specified as a real positive scalar
expressed in wavelengths. The default is 0.5. This property is available when
NumReceiveAntennas is greater than 1.

LargeScaleFadingEffect

Large-scale fading effects

Type of large-scale fading effects, specified as 'None', 'Pathloss', 'Shadowing', or
'Pathloss and shadowing'. The default is 'None'.

TransmitReceiveDistance

Distance between the transmitter and receiver (m)

Distance in meters between the transmitter and receiver, specified as a real positive
scalar. The default is 3.

FluorescentEffect

Enable fluorescent effect

To include Doppler effects due to fluorescent lighting, set this property to true (default).
This property is available when you set DelayProfile to 'Model-D' or 'Model-E'.

PowerLineFrequency

Frequency of the power line (Hz)

Frequency of the power line in Hz, specified as '50Hz' or '60Hz'. The default is
'60Hz'. This property is available when you set FluorescentEffect to true and
DelayProfile to 'Model-D' or 'Model-E'.

3-5

3 Classes — Alphabetical List

RandomStream

Source of random number stream

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'. The default is 'Global stream'.

If you set RandomStream to 'Global stream', the current global random number
stream is used for normally distributed random number generation. In this case, the
reset method resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
is used for normally distributed random number generation. In this case, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

Seed

Initial seed of mt19937ar random number stream

Initial seed of an mt19937ar random number generator algorithm, specified as a real,
nonnegative integer scalar. The default is 73. This property applies when you set the
RandomStream property to 'mt19937ar with seed'. The Seed property reinitializes
the mt19937ar random number stream in the reset method.

NormalizeChannelOutputs

Normalize channel outputs

To normalize the channel outputs by the number of receive antennas, set this property to
true (default).

Methods

clone Create wlanTGacChannel object with
same property values

info Characteristic information about TGac
Channel

3-6

 wlanTGacChannel System object

isLocked Locked status for input attributes and
nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of the wlanTGacChannel
object

step Filter signal through 802.11ac multipath
fading channel

Examples

Transmit VHT Waveform Through TGac Channel

Generate a VHT waveform and pass it through a TGac SISO channel. Display the
spectrum of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW80';

fs = 80e6;

Generate a VHT waveform.

cfg = wlanVHTConfig;

txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

Create a TGac SISO channel with path loss and shadowing enabled.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',bw, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the VHT waveform through the channel.

rxSig = tgacChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);

saScope(rxSig)

3-7

3 Classes — Alphabetical List

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

Transmit VHT Waveform Through 4x2 MIMO Channel

Create a VHT waveform having four transmit antennas and two space-time streams.

cfg = wlanVHTConfig('NumTransmitAntennas',4,'NumSpaceTimeStreams',2, ...

 'SpatialMapping','Fourier');

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create a 4x2 MIMO TGac channel and disable large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',80e6,'ChannelBandwidth','CBW80', ...

3-8

 wlanTGacChannel System object

 'NumTransmitAntennas',4,'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','None');

Pass the transmit waveform through the channel.

rxSig = tgacChan(txSig);

Display the spectrum of the two received space-time streams.

saScope = dsp.SpectrumAnalyzer('SampleRate',80e6, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Stream 1','Stream 2'});

saScope(rxSig)

3-9

3 Classes — Alphabetical List

Recover VHT Data from 2x2 MIMO Channel

Transmit a VHT-LTF and a VHT data field through a noisy 2x2 MIMO channel.
Demodulate the received VHT-LTF to estimate the channel coefficients. Recover the VHT
data and determine the number of bit errors.

Set the channel bandwidth and corresponding sample rate.

bw = 'CBW160';

fs = 160e6;

Create VHT-LTF and VHT data fields having two transmit antennas and two space-time
streams.

cfg = wlanVHTConfig('ChannelBandwidth',bw, ...

3-10

 wlanTGacChannel System object

 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

txPSDU = randi([0 1],8*cfg.PSDULength,1);

txLTF = wlanVHTLTF(cfg);

txDataSig = wlanVHTData(txPSDU,cfg);

Create a 2x2 MIMO TGac channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',bw, ...

 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create an AWGN channel noise, setting SNR = 15 dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...

 'SNR',15);

Pass the signals through the TGac channel and noise models.

rxLTF = chNoise(tgacChan(txLTF));

rxDataSig = chNoise(tgacChan(txDataSig));

Create an AWGN channel for a 160 MHz channel with a 9 dB noise figure. The noise
variance, nVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise
figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

Pass the signals through the reciever noise model.

rxLTF = rxNoise(rxLTF);

rxDataSig = rxNoise(rxDataSig);

Demodulate the VHT-LTF. Use the demodulated signal to estimate the channel
coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,cfg);

chEst = wlanVHTLTFChannelEstimate(dLTF,cfg);

Recover the data and determine the number of bit errors.

rxPSDU = wlanVHTDataRecover(rxDataSig,chEst,nVar,cfg);

numErr = biterr(txPSDU,rxPSDU)

3-11

3 Classes — Alphabetical List

numErr =

 0

Algorithms

The algorithms used to model the TGac channel are based on those used for the TGn
channel and are described in wlanTGnChannel and [1]. The changes to support the TGac
channel include:

• Increased bandwidth
• Higher-order MIMO
• Multi-user MIMO
• Reduced Doppler
• Dual-polarized antennas

Complete information on the changes required to support TGac channels can be found in
[2].

Increased Bandwidth

TGac channels support bandwidths of up to 1.28 GHz, whereas TGn channels have a
maximum bandwidth of 40 MHz. By increasing the sampling rate and decreasing the
tap spacing of the power delay profile (PDP), the TGn model is used as the basis for

TGac. The channel sampling rate is increased by a factor of 2 2 40log W()ÈÍ ˘̇ , where W is the
bandwidth. The PDP tap spacing is reduced by the same factor.

Bandwidth, W Sampling Rate Expansion
Factor

PDP Tap Spacing (ns)

W ≤ 40 MHz 1 10
40 MHz < W ≤ 80 MHz 2 5
80 MHz < W ≤ 160 MHz 4 2.5
160 MHz < W ≤ 320 MHz 8 1.25
320 MHz < W ≤ 640 MHz 16 0.625

3-12

 wlanTGacChannel System object

Bandwidth, W Sampling Rate Expansion
Factor

PDP Tap Spacing (ns)

640 MHz < W ≤ 1280 MHz 32 0.3125

MIMO Enhancements

The TGn channel model supports no more than 4x4 MIMO, while the TGac model
supports 8x8 MIMO.

The TGac model also includes support for multiple users as simultaneous communication
takes place between access points and user stations. Accordingly, the TGac model
extends the concept of cluster angles of arrival and departure to account for point-to-
multipoint transmission. Further details are described in [2].

Reduced Doppler

Indoor channel measurements indicate that the magnitude of Doppler assumed in the
TGn channel model is too high for stationary users. As such, the TGac channel model
uses a reduced environment velocity of 0.089 km/hr. This model assumes a coherence
time of 800 ms or, equivalently, an RMS Doppler spread of 0.4 Hz for a 5 GHz carrier
frequency.

References

[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE
802.11-03/940r4, May 2004.

[2] Breit, G., H. Sampath, S. Vermani, et al.TGac Channel Model Addendum. Version 12.
IEEE 802.11-09/0308r12, March 2010.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen,
“A Stochastic MIMO Radio Channel Model with Experimental Validation”. IEEE
Journal on Selected Areas in Communications., Vol. 20, No. 6, August 2002, pp.
1211–1226.

See Also
wlanTGnChannel | comm.MIMOChannel

3-13

3 Classes — Alphabetical List

Introduced in R2015b

3-14

 clone

clone
System object: wlanTGacChannel

Create wlanTGacChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a wlanTGacChannel object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3-15

3 Classes — Alphabetical List

info
System object: wlanTGacChannel

Characteristic information about TGac Channel

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information about the
wlanTGacChannel object, OBJ. The list summarizes the information contained in S.

• ChannelFilterDelay: Filter delay introduced by the implementation (samples)
• PathDelays: Delay of each of the discrete paths (seconds)
• AveragePathGains: Average gain of each of the discrete paths (dB)
• Pathloss: Path loss between the transmitter and receiver (dB).

3-16

 isLocked

isLocked
System object: wlanTGacChannel

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the wlanTGacChannel System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

3-17

3 Classes — Alphabetical List

release
System object: wlanTGacChannel

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB®, but once you release its resources, you cannot use that System object again.

3-18

 reset

reset
System object: wlanTGacChannel

Reset states of the wlanTGacChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the wlanTGacChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

3-19

3 Classes — Alphabetical List

step
System object: wlanTGacChannel

Filter signal through 802.11ac multipath fading channel

Syntax

Y = step(TGAC,X)

[Y,PATHGAINS] = step(TGAC,X)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(TGAC,X) filters input signal X through 802.11ac (TGac) fading channel
TGAC and returns the result in Y. The input X can be a double-precision data type
scalar, vector, or 2-D matrix with real or complex values. X is of size Ns-by-Nt, where Ns
represents the number of samples and Nt represents the number of transmit antennas.
Y is the output signal of size Ns-by-Nr, where Nr represents the number of receive
antennas. Y is of double-precision data type with complex values.

[Y,PATHGAINS] = step(TGAC,X) returns a complex Ns-by-Np-by-Nt-by-Nr matrix
PATHGAINS for the TGac channel System object, TGAC. Np is the number of paths in the
channel.

Note: TGAC specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an

3-20

 step

input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Examples

Transmit VHT Waveform Through TGac Channel

Generate a VHT waveform and pass it through a TGac SISO channel. Display the
spectrum of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW80';

fs = 80e6;

Generate a VHT waveform.

cfg = wlanVHTConfig;

txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

Create a TGac SISO channel with path loss and shadowing enabled.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',bw, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the VHT waveform through the channel.

rxSig = tgacChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);

saScope(rxSig)

3-21

3 Classes — Alphabetical List

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

3-22

 wlanTGnChannel System object

wlanTGnChannel System object

Filter signal through 802.11n multipath fading channel

Description

The wlanTGnChannel System object filters an input signal through an 802.11n (TGn)
multipath fading channel.

The fading processing assumes the same parameters for all NT-by-NR links of the
TGn channel. NT is the number of transmit antennas and NR is the number of receive
antennas. Each link comprises all multipaths for that link.

To filter an input signal using a TGn multipath fading channel:

1 Define and set up your TGn channel object. See “Construction” on page 3-23.
2 Call step to filter the input signal through a TGn multipath fading channel according

to the properties of wlanTGnChannel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

tgn = wlanTGnChannel creates a TGn fading channel System object, tgn. This object
filters a real or complex input signal through the TGn channel to obtain the channel-
impaired signal.

tgn = wlanTGnChannel(Name,Value) creates a TGn channel object, tgn, with the
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

3-23

3 Classes — Alphabetical List

Properties

SampleRate

Input signal sample rate (Hz)

Sample rate of the input signal in Hz, specified as a real positive scalar. The default is
20e6.

DelayProfile

Delay profile model

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-
D', 'Model-E', or 'Model-F'. The default is 'Model-B'. To enable the
FluorescentEffect property, select either 'Model-D' or 'Model-E' .

ModelParameter

A B C D E F

Breakpoint distance
(m) 5 5 5 10 20 30

RMS delay spread
(ns) 0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050
Rician K-factor (dB) 0 0 0 3 6 6
Number of clusters 1 2 2 3 4 6
Number of taps 1 9 14 18 18 18

CarrierFrequency

RF carrier frequency (Hz)

Carrier frequency of the channel in Hz, specified as a real positive scalar. The default is
5.25e9.

NormalizePathGains

Normalize path gains

3-24

 wlanTGnChannel System object

To normalize the fading processes such that the total power of the path gains, averaged
over time, is 0 dB, set this property to true (default). When you set this property to
false, the path gains are not normalized.

NumTransmitAntennas

Number of transmit antennas

Number of transmit antennas, specified as a positive integer scalar from 1 to 4. The
default is 1.

TransmitAntennaSpacing

Distance between transmit antenna elements

Distance between transmit antenna elements, specified as a real positive scalar
expressed in wavelengths. The default is 0.5. This property is available when
NumTransmitAntennas is greater than 1.

NumReceiveAntennas

Number of receive antennas

Number of receive antennas, specified as a positive integer scalar from 1 to 4. The
default is 1.

ReceiveAntennaSpacing

Distance between receive antenna elements

Distance between receive antenna elements, specified as a real positive scalar
expressed in wavelengths. The default is 0.5. This property is available when
NumReceiveAntennas is greater than 1.

LargeScaleFadingEffect

Large scale fading effects

Type of large-scale fading effects, specified as 'None', 'Pathloss', 'Shadowing', or
'Pathloss and shadowing'. The default is 'None'.

TransmitReceiveDistance

Distance between the transmitter and receiver (m)

3-25

3 Classes — Alphabetical List

Distance in meters between the transmitter and receiver, specified as a real positive
scalar. The default is 3.

FluorescentEffect

Enable fluorescent effect

To include Doppler effects due to fluorescent lighting, set this property to true (default).
This property is available when DelayProfile is 'Model-D' or 'Model-E'.

PowerLineFrequency

Frequency of the power line (Hz)

Frequency of the power line in Hz, specified as either '50Hz' or '60Hz'. The default
is '60Hz'. This property is available when FluorescentEffect is true and
DelayProfile is 'Model-D' or 'Model-E'.

RandomStream

Source of random number stream

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'. The default is 'Global stream'.

If you set RandomStream to 'Global stream', the current global random number
stream is used for normally distributed random number generation. In this case, the
reset method resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
is used for normally distributed random number generation. In this case, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

Seed

Initial seed of mt19937ar random number stream

Initial seed of an mt19937ar random number generator algorithm, specified as a real,
nonnegative integer scalar. The default is 73. This property applies when you set the
RandomStream property to 'mt19937ar with seed'. The Seed property reinitializes
the mt19937ar random number stream in the reset method.

3-26

 wlanTGnChannel System object

NormalizeChannelOutputs

Normalize channel outputs

To normalize the channel outputs by the number of receive antennas, set this property to
true (default).

Methods

clone Create wlanTGnChannel object with same
property values

info Characteristic information about TGn
Channel

isLocked Locked status for input attributes and
nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of the wlanTGnChannel object
step Filter signal through 802.11n multipath

fading channel

Examples

Transmit HT Waveform Through TGn Channel

Generate an HT waveform and pass it through a TGn SISO channel. Display the
spectrum of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW40';

fs = 40e6;

Generate an HT waveform for a 40 MHz channel.

cfg = wlanHTConfig('ChannelBandwidth',bw);

3-27

3 Classes — Alphabetical List

txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

Create a TGn SISO channel with path loss and shadowing enabled.

tgnChan = wlanTGnChannel('SampleRate',fs, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the HT waveform through the channel.

rxSig = tgnChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);

saScope(rxSig)

3-28

 wlanTGnChannel System object

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

Transmit HT Waveform Through 4x2 MIMO Channel

Create an HT waveform having four transmit antennas and two space-time streams.

cfg = wlanHTConfig('NumTransmitAntennas',4,'NumSpaceTimeStreams',2, ...

 'SpatialMapping','Fourier');

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create a 4x2 MIMO TGn channel and disable large-scale fading effects.

tgnChan = wlanTGnChannel('SampleRate',20e6, ...

 'NumTransmitAntennas',4, ...

 'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','None');

Pass the transmit waveform through the channel.

rxSig = tgnChan(txSig);

Display the spectrum of the two received space-time streams.

saScope = dsp.SpectrumAnalyzer('SampleRate',20e6, ...

 'ShowLegend',true, ...

 'ChannelNames',{'Stream 1','Stream 2'});

saScope(rxSig)

3-29

3 Classes — Alphabetical List

Recover HT Data from 2x2 MIMO Channel

Transmit an HT-LTF and an HT data field through a noisy 2x2 MIMO channel.
Demodulate the received HT-LTF to estimate the channel coefficients. Recover the HT
data and determine the number of bit errors.

Set the channel bandwidth and corresponding sample rate.

bw = 'CBW40';

fs = 40e6;

Create HT-LTF and HT data fields having two transmit antennas and two space-time
streams.

cfg = wlanHTConfig('ChannelBandwidth',bw, ...

3-30

 wlanTGnChannel System object

 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

txPSDU = randi([0 1],8*cfg.PSDULength,1);

txLTF = wlanHTLTF(cfg);

txDataSig = wlanHTData(txPSDU,cfg);

Create a 2x2 MIMO TGn channel with path loss and shadowing enabled.

tgnChan = wlanTGnChannel('SampleRate',fs, ...

 'NumTransmitAntennas',2,'NumReceiveAntennas',2, ...

 'LargeScaleFadingEffect','None');

Create AWGN channel noise, setting SNR = 15 dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...

 'SNR',15);

Pass the signals through the TGn channel and noise models.

rxLTF = chNoise(tgnChan(txLTF));

rxDataSig = chNoise(tgnChan(txDataSig));

Create an AWGN channel for a 40 MHz channel with a 9 dB noise figure. The noise
variance, nVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise
figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

Pass the signals through the channel.

rxLTF = awgnChan(rxLTF);

rxDataSig = awgnChan(rxDataSig);

Demodulate the HT-LTF. Use the demodulated signal to estimate the channel
coefficients.

dLTF = wlanHTLTFDemodulate(rxLTF,cfg);

chEst = wlanHTLTFChannelEstimate(dLTF,cfg);

Recover the data and determine the number of bit errors.

rxPSDU = wlanHTDataRecover(rxDataSig,chEst,nVar,cfg);

numErr = biterr(txPSDU,rxPSDU)

3-31

3 Classes — Alphabetical List

numErr =

 0

Algorithms

The 802.11n channel object uses a filtered Gaussian noise model in which the path
delays, powers, angular spread, angles of arrival, and angles of departure are determined
empirically. The specific modeling approach is described in [1].

Multipath Parameters

The channel is modeled as several clusters each of which represents an independent
propagation path between the transmitter and the receiver. A cluster is composed of
subpaths or taps which share angular spreads, angles of arrival, and angles of departure.
Delay and power level vary from tap to tap. Within the TGn model, clusters comprise 1–7
taps. The cluster parameters for cluster 1 of Model B are shown in the table.

Tap
Parameter

1 2 3 4 5

Delay (ns) 0 10 20 30 40
Power (dB) 0 –5.4 –10.8 –16.2 –21.7
Angle of arrival (°) 4.3 4.3 4.3 4.3 4.3
Receiver angular spread (°) 14.4 14.4 14.4 14.4 14.4
Angle of departure (°) 225.1 225.1 225.1 225.1 225.1
Transmitter angular
spread (°) 14.4 14.4 14.4 14.4 14.4

For each model, the first tap has a line-of-sight (LOS) between the transmitter and
receiver, whereas all other taps are non-line-of-sight (NLOS). As a result, the first tap
exhibits Rician behavior, while the others exhibit Rayleigh behavior. The Rician K-factor
is the ratio between the power in the first tap and the power in the other taps. A large K-
factor indicates a strong, LOS component.

The angles of arrival and departure for each cluster are randomly selected from a
uniform distribution over [0, 2π]. These angles are independent of each other and

3-32

 wlanTGnChannel System object

are fixed for all channel realizations. By fixing the values, the transmit and receive
correlation matrices are computed only once. Angular spread values were indirectly
determined from empirical data and fall within the 20° to 40° range.

Path Loss and Shadowing

The path loss exponent and the standard deviation of the shadow fading loss characterize
each model. The two parameters are depend on the presence of a line-of-sight between
the transmitter and receiver. For paths with a transmitter-to-receiver distance, d, less
that the breakpoint distance, dBP, the LOS parameters apply. For d >dBP, the NLOS
parameters apply. The table summarizes the path loss and shadow fading parameters.

ModelParameter

A B C D E F

Breakpoint distance,
dBP (m) 5 5 5 10 20 30
Path loss exponent for
d ≤ dBP 2 2 2 2 2 2
Path loss exponent for
d >dBP 3.5 3.5 3.5 3.5 3.5 3.5
Shadow fading σ (dB)
for d ≤ dBP 3 3 3 3 3 3
Shadow fading σ (dB)
for d >dBP 4 4 5 5 6 6

Doppler Effects

In indoor environments, the transmitter and receiver are stationary, and Doppler effects
arise from people moving between them. The TGn model employs a bell-shaped Doppler
spectrum in which the environmental speed, ν0, is 1.2 km/hr. The Doppler spread, fd, is
calculated as fd = ν0/λ, where λ is the carrier wavelength.

In addition to basic Doppler effects resulting from environmental motion, fluorescent
lights introduce signal fading at twice the power line frequency. The effects show up as
frequency-selective amplitude modulation. The effect is included in models D and E. To
disable this effect, set the FluorescentEffects property to false.

3-33

3 Classes — Alphabetical List

References

[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE
802.11-03/940r4, May 2004.

[2] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen,
“A Stochastic MIMO Radio Channel Model with Experimental Validation”. IEEE
Journal on Selected Areas in Communications., Vol. 20, No. 6, August 2002, pp.
1211–1226.

See Also
wlanTGacChannel | comm.MIMOChannel

Introduced in R2015b

3-34

 clone

clone
System object: wlanTGnChannel

Create wlanTGnChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a wlanTGnChannel object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3-35

3 Classes — Alphabetical List

info
System object: wlanTGnChannel

Characteristic information about TGn Channel

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information about the
wlanTGnChannel object, OBJ. The list summarizes the information contained in S.

• ChannelFilterDelay: Filter delay introduced by the implementation (samples)
• PathDelays: Delay of each of the discrete paths (seconds)
• AveragePathGains: Average gain of each of the discrete paths (dB)
• Pathloss: Path loss between the transmitter and receiver (dB).

3-36

 isLocked

isLocked
System object: wlanTGnChannel

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the wlanTGnChannel System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

3-37

3 Classes — Alphabetical List

release
System object: wlanTGnChannel

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3-38

 reset

reset
System object: wlanTGnChannel

Reset states of the wlanTGnChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the wlanTGnChannel object, H.

If you set the RandomStream property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the Seed property.

3-39

3 Classes — Alphabetical List

step
System object: wlanTGnChannel

Filter signal through 802.11n multipath fading channel

Syntax

Y = step(TGN,X)

[Y,PATHGAINS] = step(TGN,X)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Y = step(TGN,X) filters input signal X through 802.11n (TGn) fading channel TGN and
returns the result in Y. The input X can be a double-precision data type scalar, vector,
or 2-D matrix with real or complex values. X is of size Ns-by-Nt, where Ns represents
the number of samples and Nt represents the number of transmit antennas. Y is the
output signal of size Ns-by-Nr, where Nr represents the number of receive antennas. Y is
of double-precision data type with complex values.

[Y,PATHGAINS] = step(TGN,X) returns a complex Ns-by-Np-by-Nt-by-Nr matrix
PATHGAINS for the TGn channel System object, TGN. Np is the number of paths in the
channel.

Note: TGN specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an

3-40

 step

input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Examples

Transmit HT Waveform Through TGn Channel

Generate an HT waveform and pass it through a TGn SISO channel. Display the
spectrum of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW40';

fs = 40e6;

Generate an HT waveform for a 40 MHz channel.

cfg = wlanHTConfig('ChannelBandwidth',bw);

txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

Create a TGn SISO channel with path loss and shadowing enabled.

tgnChan = wlanTGnChannel('SampleRate',fs, ...

 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the HT waveform through the channel.

rxSig = tgnChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);

saScope(rxSig)

3-41

3 Classes — Alphabetical List

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

3-42

